Understanding how proteins fold into their native structure is a fundamental problem in biophysics, crucial for protein design. It has been hypothesized that the formation of a molten globule intermediate precedes folding to the native conformation of globular proteins; however, its thermodynamic properties are poorly known. We perform single-molecule pulling experiments of protein barnase in the range of 7 ◦C to 37 ◦C using a temperature-jump optical trap. We derive the folding free energy, entropy and enthalpy, and heat capacity change (ΔCp = 1,050 ± 50 cal/mol·K) at low ionic strength conditions. From the measured unfolding and folding kinetic rates, we also determine the thermodynamic properties of the transition state, finding a significant change in ΔCp (∼90%) between the unfolded and the transition states. In contrast, the major change in enthalpy (∼80%) occurs between the transition and native states. These results highlight a transition state of high energy and low configurati...
Molten globule-like transition state of protein barnase measured with calorimetric force spectroscopy
Annamaria Zaltron;
2022
Abstract
Understanding how proteins fold into their native structure is a fundamental problem in biophysics, crucial for protein design. It has been hypothesized that the formation of a molten globule intermediate precedes folding to the native conformation of globular proteins; however, its thermodynamic properties are poorly known. We perform single-molecule pulling experiments of protein barnase in the range of 7 ◦C to 37 ◦C using a temperature-jump optical trap. We derive the folding free energy, entropy and enthalpy, and heat capacity change (ΔCp = 1,050 ± 50 cal/mol·K) at low ionic strength conditions. From the measured unfolding and folding kinetic rates, we also determine the thermodynamic properties of the transition state, finding a significant change in ΔCp (∼90%) between the unfolded and the transition states. In contrast, the major change in enthalpy (∼80%) occurs between the transition and native states. These results highlight a transition state of high energy and low configurati...File | Dimensione | Formato | |
---|---|---|---|
rico-pasto-et-al-2022-molten-globule-like-transition-state-of-protein-barnase-measured-with-calorimetric-force.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.