Understanding how proteins fold into their native structure is a fundamental problem in biophysics, crucial for protein design. It has been hypothesized that the formation of a molten globule intermediate precedes folding to the native conformation of globular proteins; however, its thermodynamic properties are poorly known. We perform single-molecule pulling experiments of protein barnase in the range of 7 ◦C to 37 ◦C using a temperature-jump optical trap. We derive the folding free energy, entropy and enthalpy, and heat capacity change (ΔCp = 1,050 ± 50 cal/mol·K) at low ionic strength conditions. From the measured unfolding and folding kinetic rates, we also determine the thermodynamic properties of the transition state, finding a significant change in ΔCp (∼90%) between the unfolded and the transition states. In contrast, the major change in enthalpy (∼80%) occurs between the transition and native states. These results highlight a transition state of high energy and low configurati...

Molten globule-like transition state of protein barnase measured with calorimetric force spectroscopy

Annamaria Zaltron;
2022

Abstract

Understanding how proteins fold into their native structure is a fundamental problem in biophysics, crucial for protein design. It has been hypothesized that the formation of a molten globule intermediate precedes folding to the native conformation of globular proteins; however, its thermodynamic properties are poorly known. We perform single-molecule pulling experiments of protein barnase in the range of 7 ◦C to 37 ◦C using a temperature-jump optical trap. We derive the folding free energy, entropy and enthalpy, and heat capacity change (ΔCp = 1,050 ± 50 cal/mol·K) at low ionic strength conditions. From the measured unfolding and folding kinetic rates, we also determine the thermodynamic properties of the transition state, finding a significant change in ΔCp (∼90%) between the unfolded and the transition states. In contrast, the major change in enthalpy (∼80%) occurs between the transition and native states. These results highlight a transition state of high energy and low configurati...
File in questo prodotto:
File Dimensione Formato  
rico-pasto-et-al-2022-molten-globule-like-transition-state-of-protein-barnase-measured-with-calorimetric-force.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439497
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
  • OpenAlex 29
social impact