A significant hurdle limiting musculoskeletal tissue regeneration is the inability to develop effective vascular networks to support cellular development within engineered constructs. Due to the inherent complexity of angiogenesis, where multiple biochemical pathways induce and control vessel formation, our laboratory has taken an alternate approach using a matrix material containing angiogenic and osteogenic proteins derived from human placental tissues. Single bolus administrations of the human placental matrix (hPM) have been shown to initiate angiogenesis but vascular networks deteriorated over time. Controlled/sustained delivery was therefore hypothesized to stabilize and extend network formation. To test this hypothesis, hPM was encapsulated in degradable poly(lactic-co-glycolic acid) (PLGA) microparticles to extend the release period. Microparticle preparation including loading, size, encapsulation efficiency, and release profile was optimized for hPM. The angiogenic cellular response to the hPM/PLGA-loaded microparticles was assessed in 3D alginate hydrogel matrices seeded with primary human endothelial cells. Results show an average microparticle diameter of 91.82 ± 2.92 μm, with an encapsulation efficiency of 75 %, and a release profile extending over 30 days. Three-dimensional angiogenic assays with hPM-loaded PLGA microparticles showed initial stimulation of angiogenic tubules after 14 days and further defined network formations after 21 days of culture. Although additional optimization is necessary, these studies confirm the effectiveness of a novel controlled multi-protein release approach to induce and maintain capillary networks within alginate tissue scaffolds.

Controlled release of a heterogeneous human placental matrix from PLGA microparticles to modulate angiogenesis

Tonello S.;
2016

Abstract

A significant hurdle limiting musculoskeletal tissue regeneration is the inability to develop effective vascular networks to support cellular development within engineered constructs. Due to the inherent complexity of angiogenesis, where multiple biochemical pathways induce and control vessel formation, our laboratory has taken an alternate approach using a matrix material containing angiogenic and osteogenic proteins derived from human placental tissues. Single bolus administrations of the human placental matrix (hPM) have been shown to initiate angiogenesis but vascular networks deteriorated over time. Controlled/sustained delivery was therefore hypothesized to stabilize and extend network formation. To test this hypothesis, hPM was encapsulated in degradable poly(lactic-co-glycolic acid) (PLGA) microparticles to extend the release period. Microparticle preparation including loading, size, encapsulation efficiency, and release profile was optimized for hPM. The angiogenic cellular response to the hPM/PLGA-loaded microparticles was assessed in 3D alginate hydrogel matrices seeded with primary human endothelial cells. Results show an average microparticle diameter of 91.82 ± 2.92 μm, with an encapsulation efficiency of 75 %, and a release profile extending over 30 days. Three-dimensional angiogenic assays with hPM-loaded PLGA microparticles showed initial stimulation of angiogenic tubules after 14 days and further defined network formations after 21 days of culture. Although additional optimization is necessary, these studies confirm the effectiveness of a novel controlled multi-protein release approach to induce and maintain capillary networks within alginate tissue scaffolds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439044
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact