A recollement is a decomposition of a given category (abelian or triangulated) into two subcategories with functorial data that enables the glueing of structural information. This paper is dedicated to investigating the behaviour under glueing of some basic properties of abelian categories (well-poweredness, Grothendieck's axioms AB3, AB4 and AB5, existence of a generator) in the presence of a recollement. In particular, we observe that in a recollement of a Grothendieck abelian category the other two categories involved are also Grothendieck abelian and, more significantly, we provide an example where the converse does not hold and explore multiple sufficient conditions for it to hold.
Properties of abelian categories via recollements
Vitória, Jorge
2019
Abstract
A recollement is a decomposition of a given category (abelian or triangulated) into two subcategories with functorial data that enables the glueing of structural information. This paper is dedicated to investigating the behaviour under glueing of some basic properties of abelian categories (well-poweredness, Grothendieck's axioms AB3, AB4 and AB5, existence of a generator) in the presence of a recollement. In particular, we observe that in a recollement of a Grothendieck abelian category the other two categories involved are also Grothendieck abelian and, more significantly, we provide an example where the converse does not hold and explore multiple sufficient conditions for it to hold.File | Dimensione | Formato | |
---|---|---|---|
Properties of abelian categories via recollements.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso gratuito
Dimensione
584.33 kB
Formato
Adobe PDF
|
584.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.