In this note, we survey two instances in the representation theory of finite-dimensional algebras where the quantity of a type of structures is intimately related to the size of those same structures. More explicitly, we review the fact that (1) a finite-dimensional algebra admits only finitely many indecomposable modules up to isomorphism if and only if every indecomposable module is finite-dimensional; (2) the category of modules over a finite-dimensional algebra admits only finitely many torsion classes if and only if every torsion class is generated by a finite-dimensional module.

Quantity vs. size in representation theory

Jorge Vitoria
2019

Abstract

In this note, we survey two instances in the representation theory of finite-dimensional algebras where the quantity of a type of structures is intimately related to the size of those same structures. More explicitly, we review the fact that (1) a finite-dimensional algebra admits only finitely many indecomposable modules up to isomorphism if and only if every indecomposable module is finite-dimensional; (2) the category of modules over a finite-dimensional algebra admits only finitely many torsion classes if and only if every torsion class is generated by a finite-dimensional module.
File in questo prodotto:
File Dimensione Formato  
21038-Texto do Trabalho-80293-1-10-20200927.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 357.53 kB
Formato Adobe PDF
357.53 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3428406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact