A flash flood is a flood that follows the causative storm event in a short period of time. The term “flash” reflects a rapid response, with water levels in the drainage network reaching a crest within minutes to a few hours after the onset of the rain event, leaving extremely short time for warning [Creutin and Borga, 2003; Borga et al., 2008]. Flash floods are localized phenomena that occur in watersheds of few hundred kilometres or less, with response times of a few hours or less [Creutin and Borga, 2003; O’Connor and Costa, 2004]. Such basins respond rapidly to intense rainfall because of steep slopes and impermeable surfaces, saturated soils, or because of human (i.e., urbanization) or fire-induced alterations to the natural drainage. Causative events are generally excessive storms, but can also be the sudden release of water impounded by a natural jam (i.e., formed by ice or rock, mud, and wood debris) or human-made dam or levee. This thesis focuses on flash flood events associated with heavy rainfall. Europe experienced several catastrophic flash floods in the last decades. Data concerning a number of these floods occurred during the last 15 years have been reported in Marchi et al. (2010). Examination of these data and references therein shows that: Flash floods occur in any of the hydroclimatic regions of Europe, even though three regions appear to be characterized by high flash flood potential: Mediterranean, Alpine Mediterranean, and Inland Continental Europe; Heavy rainfall accumulation is a necessary but not sufficient condition for flash floods, since hydrology critically controls flash-flood-triggering. Without hydrological analysis, it is impossible to evaluate the flood potential of storms, particularly in the fringe of the flood/no flood threshold; Flash flood hazard is related to both stream response (flood) and landscape response (landslide and erosion). The intense erosion and solid transport associated with these extreme events add to the hazard and strongly influence the quality of soils, waters and ecosystems. The twofold consequence of the above observations is that forecasting of flash-floods: Depends critically on meso-scale storm forecasting, with a specific attention to the processes leading to slow movement of the precipitation system; Necessitates real time hydrological modelling, with a specific attention to the runoff generation processes over a wide range of scales. Although they are seldom all deployed at the same time, the technical requirements for a hydrometeorological flash flood forecasting system include: A numerical weather prediction (NWP) model, capable to provide short-range Quantitative Precipitation Forecasts (QPF); A remote sensing based (radar, satellites) precipitation detection system, for storm monitoring and for the possible initialization and conditioning of the NWP model, and A hydrological-hydraulic forecasting model, capable to forecast the stream response from the rain input. These requirements are similar to those of more common riverine flood forecasting systems. However, some features characterise flash flood forecasting with respect to riverine flood forecasting and point out to their larger uncertainty. These are: The short lead time, which implies both the integration of meteorological and hydrologic forecast, and the difficulties of using data assimilation procedures based on real time observed discharges to reduce uncertainty in hydrologic predictions; The need to provide local forecasts, which means that, on one hand, the rainfall must be monitored and forecasted on a wide range of space/time scales, and, on the other hand, every tributary of a monitored basin can be considered as a potential target for flood warning. Estimation of extreme rainfall rates by weather radar at the appropriate time and space scales is the cornerstone of flash flood analysis and forecasting. A large body of research work has greatly improved in the last two decades radar technology and algorithms for rain quantification. This work has shown that well maintained conventional radar systems can estimate rainfall at ground level provided that a number of precautions are taken, and in particular: The siting of the instrument and its scanning protocol must be carefully selected and analysed; The quality of the instrument must be routinely checked; The signal processing must take into account the physics of the instrument as well as the properties of the atmospheric and ground targets. A downstream control of the radar rainfall processing can rely on rain-gauge measurements at ground level using a variety of methods. When these precautions are taken, different studies have shown that radar-based rainfall estimates are reliable and may be used as input in rainfall-runoff models for flood modelling and forecasting [Borga et al., 2000; Delrieu et al., 2005; Borga et al., 2002]. These very positive results must not be hiding some weaknesses: Most of these results never had the opportunity to be coherently validated over a significant number of flash floods events. The use of specific experiments or of limited operational radar data sets is insufficient to test complex combinations of algorithms, especially if high rain intensities are of interest. Very few results have been translated into operational hydrologic applications. This thesis aims to investigate the use of weather radar for the purpose of understanding the hydrometeorological mechanisms leading to flash floods, and then for flash flood forecasting. The outline of the thesis work is as follows. Chapter 1 provides a literature review of the rainfall estimation by weather radar for flash flood-generating storms. Chapter 2 describes a number of procedures for the rainfall estimation at the ground during flash flood events in mountainous catchments. A metric for the analysis of the rainfall field spatial patterns is proposed in Chapter 3, in the context of the analysis of a number of Romenian flash floods. This metric is used for the analysis of two flash flood events, respectively occurred in 2003 in the Eastern Italian Alps (Chapter 4) and in Western Slovenia (Chapter 5). Major conclusions from the work are reported in Chapter 6.

Una piena improvvisa è una piena che segue l’evento precipitativo che la ha causata entro un breve periodo di tempo. Il termine “improvvisa o flash” riflette una risposta rapida, con il picco di piena che si verifica nella rete di drenaggio nel volgere di alcuni minuti fino a poche ore dopo l’inizio dell’evento di pioggia. Questo fatto lascia intendere quanto poco tempo ci sia per l’allerta [Creutin and Borga, 2003; Borga et al., 2008]. Questo tipo di bacini rispondo rapidamente ad una precipitazione intensa a causa di pendii ripidi e superfici impermeabili, terreni saturi, o a per fattori determinati dall’uomo (vedi per esempio l’urbanizzazione) o a causa di alterazioni del drenaggio naturale del terreno dovuto ad incendi. Gli eventi scatenanti le piene improvvise sono generalmente precipitazioni che portano all’eccesso di drenaggio, ma questo tipo di piene possono anche essere scatenate dal rilascio improvviso di acqua trattenuta da impedimenti naturali (per esempio formati da ghiaccio e roccia, fango e detriti di legno) o di tipo artificiale come dighe e argini. Questa tesi si concentra su eventi di piena improvvisa associati a precipitazioni intense. L’Europa ha conosciuto diverse inondazioni catastrofiche negli ultimi decenni. I dati relativi un certo numero di queste inondazioni che si sono verificate nel corso degli ultimi 15 anni sono riportati da Marchi et al. (2010). Dall’analisi di questi dati e di queste fonti risulta che: Una piena improvvisa si può verificare in qualsivoglia regione idroclimatica dell’Europa, anche se tre regioni sembrano essere caratterizzate da una grande incidenza di di piene improvvise: l’area Mediterranea, quella Alpino-Mediterranea, e quella Continentale; Una gran quantità di pioggia accumulata è una condizione necessaria ma non sufficiente al verificarsi di una piena improvvisa, dal momento che l’idrologia controlla in modo decisivo l’innesco della piena improvvisa. Senza un’analisi di tipo idrologico, risulta impossibile valutare la probabilità che una data precipitazione scateni una piena, in praticolare in termini di una soglia oltre la quale si verifica la piena; La pericolosià delle piene improvvise è collegata sia alla risposta del fiume (la piena) che alla risposta del terreno (fenomeni di tipo franoso ed erosivo). L’intensa erosione ed il trasporto solido associati a questi fenomeni estremi si aggiungono alla pericolosità ed influenzano in modo significativo la qualità dei terreni, delle acque e degli ecosistemi. La duplice conseguenza delle osservazioni appena fatte è che la previsione di piene improvvise: Dipende in modo determinante dalle previsioni delle precipitazioni che si sviluppano alla meso-scala, con una attenzione specifica ai processi che frenano la circolazione del sistema di precipitazione; Richiedone modelli idrologici che lavorino in tempo reale, con una particolare attenzione ai processi du generazione del deflusso a vasta scala. Anche se raramente sono tutti utilizzati contemporaneamente, i requisiti tecnici per un sistema di previsione idrometeorologica per le piene improvvise comprendono: Un modello numerico di previsione (NWP2), in grado di fornire previsioni quantitative di pioggia a corto raggio (QPF3); Un sistema di rilevamento in remoto per la pioggia (radar, satellite), per il monitoriraggio dei fenomeni temporaleschi e la possibilie inizializzazione e condizionamento del modello NWP, e Un modello di previsione idrologico-idraulico, in grado di prevedere la risposta del corso d’acqua all’input pioggia. Tali requisiti sono simili a quelli più comuni utilizzati per la previsione delle alluvioni dei sistemi fluviali. Tuttavia, alcuni elementi caratterizzano la previsione delle piene improvvise rispetto alla previsione delle alluvioni e ne sottolineano la grande incertezza. Questi sono: Il breve periodo durante il quale questi processi si sviluppano, che implica sia l’integrazione di un sistema di previsione di tipo meteorologico e idrologico, che la difficoltà nell’utilizzo di procedure di assimilazione di dati basate sull’osservazione in tempo reale delle portate al fine di ridurre l’incertezza nelle previsioni idrologiche; La necessità di fornire previsioni a scala locale, il che significa da una parte che la pioggia deve essere monitorata e prevista su una vasta scala spazio-temporale, all’altra che ciascun tributario del bacino monitorato può essere considerato come un bersaglio potenziale per un allarme di piena. La stima di fenomeni precipitativi estremi tramite l’utilizzo del radar meteorologico alla appropriata scala spazio-temporale è una pietra miliare dell’analisi e della previsione delle piene improvvise. Una grande branca della ricerca in questo campo ha favorito un notevolmente migliorato, negli ultimi due decenni, delle tecnologie radar e degli algoritmi per la stima di pioggia. Questo lavoro ha dimostrato che anche utilizzando sistemi radar convenzionali si possono ottenere stime di precipitaziona a livello del suolo, a condizione che vengono adottate una serie di precauzioni, in particolare: L’ubicazione dello strumento e del suo protocollo di scansione devono essere attentamente selezionati ed analizzati; La qualità dello strumento deve essere sottoposta a controlli ordinari; L’elaborazione del segnale deve tener conto della fisica dello strumento così come delle proprietà atmosferiche e dei bersagli di terra. Un controllo a valle del trattamento delle precipitazioni radar può essere fatto tramite misurazioni da pluviometro a livello del suolo utilizzando una varietà di metodi. Quando si sono prese queste precauzioni, diversi studi hanno dimostrato che le stime di precipitazione basate su radar meteorologico sono affidabili e possono essere utilizzate come input di modelli afflussodeflusso per la modellazione e la previsione delle piene [Borga et al., 2000; Delrieu et al., 2005; Borga et al., 2002]. A fronte di questi risultati molto positivi non devono però essere nascosti alcuni punti deboli: La maggior parte di questi risultati non hanno mai la possibilità di essere coerentemente convalidati su un numero significativo di eventi di piena improvvisa. L’utilizzo di esperimenti specifici o di una banca dati limitata di dati radar è insufficiente a testare la combinazione complessa degli algoritmi utilizzati, specialmente se si è interessati ad intensità di pioggia elevata. Un numero molto limitato di risultati positivi è stato tradotto in applicazioni idrologiche operative. Questa tesi si propone di esaminare l’uso del radar meteorologico ai fini della comprensione dei meccanismi idrometeorologici che portano alla formazione di piene improvvise, e quindi alla loro previsione. L’organizzazione del lavoro di tesi è la seguente. Il Capitolo 1 fornisce una revisione della letteratura sul tema della stima di precipitazione tramite radar meteorologico per le precipitazioni che causano la formazione di piene improvvise. Il Capitolo 2 descrive una serie di procedure per la stima delle precipitazioni al suolo durante gli eventi di piena improvvisa in bacini montani. Una metrica per l’analisi spaziale del campo di pioggia viene proposta nel Capitolo 3, nel contesto dell’analisi di una serie di piene improvvise verificatesi in Romania. Questa metrica è utilizzata per l’analisi di due eventi di piena, accaduti rispettivamente nel 2003 nelle Alpi Italiane friulane e nella parte ovest della Slovenia (Capitolo 5). Le conclusioni principali del lavoro di tesi sono riportate nel Capitolo 6.

Radar Hydrology and Flash Flood Event Analysis / Zanon, Francesco. - (2010 Jan 27).

Radar Hydrology and Flash Flood Event Analysis

Zanon, Francesco
2010

Abstract

Una piena improvvisa è una piena che segue l’evento precipitativo che la ha causata entro un breve periodo di tempo. Il termine “improvvisa o flash” riflette una risposta rapida, con il picco di piena che si verifica nella rete di drenaggio nel volgere di alcuni minuti fino a poche ore dopo l’inizio dell’evento di pioggia. Questo fatto lascia intendere quanto poco tempo ci sia per l’allerta [Creutin and Borga, 2003; Borga et al., 2008]. Questo tipo di bacini rispondo rapidamente ad una precipitazione intensa a causa di pendii ripidi e superfici impermeabili, terreni saturi, o a per fattori determinati dall’uomo (vedi per esempio l’urbanizzazione) o a causa di alterazioni del drenaggio naturale del terreno dovuto ad incendi. Gli eventi scatenanti le piene improvvise sono generalmente precipitazioni che portano all’eccesso di drenaggio, ma questo tipo di piene possono anche essere scatenate dal rilascio improvviso di acqua trattenuta da impedimenti naturali (per esempio formati da ghiaccio e roccia, fango e detriti di legno) o di tipo artificiale come dighe e argini. Questa tesi si concentra su eventi di piena improvvisa associati a precipitazioni intense. L’Europa ha conosciuto diverse inondazioni catastrofiche negli ultimi decenni. I dati relativi un certo numero di queste inondazioni che si sono verificate nel corso degli ultimi 15 anni sono riportati da Marchi et al. (2010). Dall’analisi di questi dati e di queste fonti risulta che: Una piena improvvisa si può verificare in qualsivoglia regione idroclimatica dell’Europa, anche se tre regioni sembrano essere caratterizzate da una grande incidenza di di piene improvvise: l’area Mediterranea, quella Alpino-Mediterranea, e quella Continentale; Una gran quantità di pioggia accumulata è una condizione necessaria ma non sufficiente al verificarsi di una piena improvvisa, dal momento che l’idrologia controlla in modo decisivo l’innesco della piena improvvisa. Senza un’analisi di tipo idrologico, risulta impossibile valutare la probabilità che una data precipitazione scateni una piena, in praticolare in termini di una soglia oltre la quale si verifica la piena; La pericolosià delle piene improvvise è collegata sia alla risposta del fiume (la piena) che alla risposta del terreno (fenomeni di tipo franoso ed erosivo). L’intensa erosione ed il trasporto solido associati a questi fenomeni estremi si aggiungono alla pericolosità ed influenzano in modo significativo la qualità dei terreni, delle acque e degli ecosistemi. La duplice conseguenza delle osservazioni appena fatte è che la previsione di piene improvvise: Dipende in modo determinante dalle previsioni delle precipitazioni che si sviluppano alla meso-scala, con una attenzione specifica ai processi che frenano la circolazione del sistema di precipitazione; Richiedone modelli idrologici che lavorino in tempo reale, con una particolare attenzione ai processi du generazione del deflusso a vasta scala. Anche se raramente sono tutti utilizzati contemporaneamente, i requisiti tecnici per un sistema di previsione idrometeorologica per le piene improvvise comprendono: Un modello numerico di previsione (NWP2), in grado di fornire previsioni quantitative di pioggia a corto raggio (QPF3); Un sistema di rilevamento in remoto per la pioggia (radar, satellite), per il monitoriraggio dei fenomeni temporaleschi e la possibilie inizializzazione e condizionamento del modello NWP, e Un modello di previsione idrologico-idraulico, in grado di prevedere la risposta del corso d’acqua all’input pioggia. Tali requisiti sono simili a quelli più comuni utilizzati per la previsione delle alluvioni dei sistemi fluviali. Tuttavia, alcuni elementi caratterizzano la previsione delle piene improvvise rispetto alla previsione delle alluvioni e ne sottolineano la grande incertezza. Questi sono: Il breve periodo durante il quale questi processi si sviluppano, che implica sia l’integrazione di un sistema di previsione di tipo meteorologico e idrologico, che la difficoltà nell’utilizzo di procedure di assimilazione di dati basate sull’osservazione in tempo reale delle portate al fine di ridurre l’incertezza nelle previsioni idrologiche; La necessità di fornire previsioni a scala locale, il che significa da una parte che la pioggia deve essere monitorata e prevista su una vasta scala spazio-temporale, all’altra che ciascun tributario del bacino monitorato può essere considerato come un bersaglio potenziale per un allarme di piena. La stima di fenomeni precipitativi estremi tramite l’utilizzo del radar meteorologico alla appropriata scala spazio-temporale è una pietra miliare dell’analisi e della previsione delle piene improvvise. Una grande branca della ricerca in questo campo ha favorito un notevolmente migliorato, negli ultimi due decenni, delle tecnologie radar e degli algoritmi per la stima di pioggia. Questo lavoro ha dimostrato che anche utilizzando sistemi radar convenzionali si possono ottenere stime di precipitaziona a livello del suolo, a condizione che vengono adottate una serie di precauzioni, in particolare: L’ubicazione dello strumento e del suo protocollo di scansione devono essere attentamente selezionati ed analizzati; La qualità dello strumento deve essere sottoposta a controlli ordinari; L’elaborazione del segnale deve tener conto della fisica dello strumento così come delle proprietà atmosferiche e dei bersagli di terra. Un controllo a valle del trattamento delle precipitazioni radar può essere fatto tramite misurazioni da pluviometro a livello del suolo utilizzando una varietà di metodi. Quando si sono prese queste precauzioni, diversi studi hanno dimostrato che le stime di precipitazione basate su radar meteorologico sono affidabili e possono essere utilizzate come input di modelli afflussodeflusso per la modellazione e la previsione delle piene [Borga et al., 2000; Delrieu et al., 2005; Borga et al., 2002]. A fronte di questi risultati molto positivi non devono però essere nascosti alcuni punti deboli: La maggior parte di questi risultati non hanno mai la possibilità di essere coerentemente convalidati su un numero significativo di eventi di piena improvvisa. L’utilizzo di esperimenti specifici o di una banca dati limitata di dati radar è insufficiente a testare la combinazione complessa degli algoritmi utilizzati, specialmente se si è interessati ad intensità di pioggia elevata. Un numero molto limitato di risultati positivi è stato tradotto in applicazioni idrologiche operative. Questa tesi si propone di esaminare l’uso del radar meteorologico ai fini della comprensione dei meccanismi idrometeorologici che portano alla formazione di piene improvvise, e quindi alla loro previsione. L’organizzazione del lavoro di tesi è la seguente. Il Capitolo 1 fornisce una revisione della letteratura sul tema della stima di precipitazione tramite radar meteorologico per le precipitazioni che causano la formazione di piene improvvise. Il Capitolo 2 descrive una serie di procedure per la stima delle precipitazioni al suolo durante gli eventi di piena improvvisa in bacini montani. Una metrica per l’analisi spaziale del campo di pioggia viene proposta nel Capitolo 3, nel contesto dell’analisi di una serie di piene improvvise verificatesi in Romania. Questa metrica è utilizzata per l’analisi di due eventi di piena, accaduti rispettivamente nel 2003 nelle Alpi Italiane friulane e nella parte ovest della Slovenia (Capitolo 5). Le conclusioni principali del lavoro di tesi sono riportate nel Capitolo 6.
27-gen-2010
A flash flood is a flood that follows the causative storm event in a short period of time. The term “flash” reflects a rapid response, with water levels in the drainage network reaching a crest within minutes to a few hours after the onset of the rain event, leaving extremely short time for warning [Creutin and Borga, 2003; Borga et al., 2008]. Flash floods are localized phenomena that occur in watersheds of few hundred kilometres or less, with response times of a few hours or less [Creutin and Borga, 2003; O’Connor and Costa, 2004]. Such basins respond rapidly to intense rainfall because of steep slopes and impermeable surfaces, saturated soils, or because of human (i.e., urbanization) or fire-induced alterations to the natural drainage. Causative events are generally excessive storms, but can also be the sudden release of water impounded by a natural jam (i.e., formed by ice or rock, mud, and wood debris) or human-made dam or levee. This thesis focuses on flash flood events associated with heavy rainfall. Europe experienced several catastrophic flash floods in the last decades. Data concerning a number of these floods occurred during the last 15 years have been reported in Marchi et al. (2010). Examination of these data and references therein shows that: Flash floods occur in any of the hydroclimatic regions of Europe, even though three regions appear to be characterized by high flash flood potential: Mediterranean, Alpine Mediterranean, and Inland Continental Europe; Heavy rainfall accumulation is a necessary but not sufficient condition for flash floods, since hydrology critically controls flash-flood-triggering. Without hydrological analysis, it is impossible to evaluate the flood potential of storms, particularly in the fringe of the flood/no flood threshold; Flash flood hazard is related to both stream response (flood) and landscape response (landslide and erosion). The intense erosion and solid transport associated with these extreme events add to the hazard and strongly influence the quality of soils, waters and ecosystems. The twofold consequence of the above observations is that forecasting of flash-floods: Depends critically on meso-scale storm forecasting, with a specific attention to the processes leading to slow movement of the precipitation system; Necessitates real time hydrological modelling, with a specific attention to the runoff generation processes over a wide range of scales. Although they are seldom all deployed at the same time, the technical requirements for a hydrometeorological flash flood forecasting system include: A numerical weather prediction (NWP) model, capable to provide short-range Quantitative Precipitation Forecasts (QPF); A remote sensing based (radar, satellites) precipitation detection system, for storm monitoring and for the possible initialization and conditioning of the NWP model, and A hydrological-hydraulic forecasting model, capable to forecast the stream response from the rain input. These requirements are similar to those of more common riverine flood forecasting systems. However, some features characterise flash flood forecasting with respect to riverine flood forecasting and point out to their larger uncertainty. These are: The short lead time, which implies both the integration of meteorological and hydrologic forecast, and the difficulties of using data assimilation procedures based on real time observed discharges to reduce uncertainty in hydrologic predictions; The need to provide local forecasts, which means that, on one hand, the rainfall must be monitored and forecasted on a wide range of space/time scales, and, on the other hand, every tributary of a monitored basin can be considered as a potential target for flood warning. Estimation of extreme rainfall rates by weather radar at the appropriate time and space scales is the cornerstone of flash flood analysis and forecasting. A large body of research work has greatly improved in the last two decades radar technology and algorithms for rain quantification. This work has shown that well maintained conventional radar systems can estimate rainfall at ground level provided that a number of precautions are taken, and in particular: The siting of the instrument and its scanning protocol must be carefully selected and analysed; The quality of the instrument must be routinely checked; The signal processing must take into account the physics of the instrument as well as the properties of the atmospheric and ground targets. A downstream control of the radar rainfall processing can rely on rain-gauge measurements at ground level using a variety of methods. When these precautions are taken, different studies have shown that radar-based rainfall estimates are reliable and may be used as input in rainfall-runoff models for flood modelling and forecasting [Borga et al., 2000; Delrieu et al., 2005; Borga et al., 2002]. These very positive results must not be hiding some weaknesses: Most of these results never had the opportunity to be coherently validated over a significant number of flash floods events. The use of specific experiments or of limited operational radar data sets is insufficient to test complex combinations of algorithms, especially if high rain intensities are of interest. Very few results have been translated into operational hydrologic applications. This thesis aims to investigate the use of weather radar for the purpose of understanding the hydrometeorological mechanisms leading to flash floods, and then for flash flood forecasting. The outline of the thesis work is as follows. Chapter 1 provides a literature review of the rainfall estimation by weather radar for flash flood-generating storms. Chapter 2 describes a number of procedures for the rainfall estimation at the ground during flash flood events in mountainous catchments. A metric for the analysis of the rainfall field spatial patterns is proposed in Chapter 3, in the context of the analysis of a number of Romenian flash floods. This metric is used for the analysis of two flash flood events, respectively occurred in 2003 in the Eastern Italian Alps (Chapter 4) and in Western Slovenia (Chapter 5). Major conclusions from the work are reported in Chapter 6.
radar hydrology, flash flood
Radar Hydrology and Flash Flood Event Analysis / Zanon, Francesco. - (2010 Jan 27).
File in questo prodotto:
File Dimensione Formato  
TESIphd_v1.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 27.61 MB
Formato Adobe PDF
27.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3427349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact