L’auto-organizzazione di molecole organiche su superfici solide è uno degli approcci più diffusi per la creazione di architetture supramolecolari supportate di dimensioni controllate e con proprietà innovative. L’uso combinato di differenti interazioni di natura non covalente adsorbato–adsorbato e adsorbato–substrato consente infatti la modulazione dell’associazione di specie distinte in modo quasi altrettanto accurato che nei sistemi biologici, fonte primaria di ispirazione per ciò che può essere realizzato artificialmente. Il consenso sull’uso d’interazioni intermolecolari estese non covalenti nell’ingegnerizzazione di nanostrutture bidimensionali supportate prive di difetti è unanime. Ciononostante, i materiali così ottenuti sono spesso fragili, incapaci di resistere a condizioni aggressive, privi di stabilità meccanica ed inefficienti nei processi di trasferimento di carica intermolecolare; sono cioè materiali inadatti per applicazioni tecnologiche. La produzione di sistemi nanostrutturati supportati con proprietà predeterminate, privi di difetti e con risvolti applicativi implica quindi la sintesi di network covalenti robusti, non caratterizzati dalle limitazioni di cui sopra. In questa tesi di dottorato si è voluta esplorare sia sperimentalmente sia teoricamente la possibilità di stabilizzare covalentemente network supramolecolari funzionali in una/due dimensioni stimolando la formazione di legami covalenti tra molecole preorganizzate su una superficie.
The scientific community is nowadays focused on the design and the production of nm/μm-sized systems for their relevance to nanotechnology, energy production and storage, life science and environment. Advances in high performing computing and in synthetic/characterization methods make possible devising novel rational approaches to tailor properties of low-dimensional architectures of molecular networks on inorganic substrates; i.e., to control the electron transport properties of active layers and the reactivity of selected sites. As such, the self-assembly of functional architectures on appropriate surfaces is the most promising bottom-up approach to organize and integrate single molecules on solid substrates. As a consequence of the persistent progress in computational power and multiscale material modeling, new materials are less likely to be discovered by a trial-and-error approach. This points to a paradigm shift in modeling, away from reproducing known properties of known materials and towards simulating the properties of hypothetical composites as a forerunner to get real materials with desired characteristics. The interplay among multiscale material modeling, new synthetic routes and appropriate validation experiments is crucial to design the desired behavior at each length scale. In this PhD thesis we exploited integrated methodologies to provide interpretative tools about structure and functions of organic/inorganic hybrid nanostructured materials made of molecular mono-layers deposited on technological relevant substrates, suitable for applications in strategic areas such as catalysis, artificial photosynthesis, molecular electronics-magnetism and molecular recognition.
Surface supported supramolecular architectures: an experimental and modeling study / Mohebbi, Elaheh. - (2019 Mar 01).
Surface supported supramolecular architectures: an experimental and modeling study
Mohebbi, Elaheh
2019
Abstract
The scientific community is nowadays focused on the design and the production of nm/μm-sized systems for their relevance to nanotechnology, energy production and storage, life science and environment. Advances in high performing computing and in synthetic/characterization methods make possible devising novel rational approaches to tailor properties of low-dimensional architectures of molecular networks on inorganic substrates; i.e., to control the electron transport properties of active layers and the reactivity of selected sites. As such, the self-assembly of functional architectures on appropriate surfaces is the most promising bottom-up approach to organize and integrate single molecules on solid substrates. As a consequence of the persistent progress in computational power and multiscale material modeling, new materials are less likely to be discovered by a trial-and-error approach. This points to a paradigm shift in modeling, away from reproducing known properties of known materials and towards simulating the properties of hypothetical composites as a forerunner to get real materials with desired characteristics. The interplay among multiscale material modeling, new synthetic routes and appropriate validation experiments is crucial to design the desired behavior at each length scale. In this PhD thesis we exploited integrated methodologies to provide interpretative tools about structure and functions of organic/inorganic hybrid nanostructured materials made of molecular mono-layers deposited on technological relevant substrates, suitable for applications in strategic areas such as catalysis, artificial photosynthesis, molecular electronics-magnetism and molecular recognition.File | Dimensione | Formato | |
---|---|---|---|
mohebbi_elaheh_thesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
24.06 MB
Formato
Adobe PDF
|
24.06 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.