Much of the effort in the modern chemical and physical sciences is devoted to the study of complex dynamical phenomena. Such a study is often hampered by the considerable complexity (i.e., the high dimensionality) exhibited by the systems of interest. In this research project, of theoretical and methodological character, we explore some facets of the topics of model reduction and simplification of complex dynamics, both deterministic and stochastic. In particular, in the first part of the work (chs. 2-5), we focus on deterministic systems. In chapter 2, starting from the findings of two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234101 (2013) and P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] we introduce the concept of "canonical format" of the evolution law for mass-action-based chemical kinetics, and show that the study of such a type of formats could lead to the discovery of new interesting features and to a rationalization of already well-known ones. Specifically, we unveil the existence of "attracting subspaces" in an abstract "hyper-spherical" representation of the dynamics of a reacting system. In chapter 3, based on the theory devised in ch. 2, we develop an algorithm (implemented in the companion software DRIMAK, acronym of Dimensional Reduction for Isothermal Mass-Action Kinetics) aimed at detecting the neighborhood of the Slow Manifold, which is a hypersurface, in the concentration space, in the proximity of which the slow evolution takes place. The detection of the Slow Manifold for a reacting system is a potential key-step to elaborate dimensionality reduction strategies. In chapter 4 we extend the theory to open reaction networks, i.e., reaction networks with one or more reactants continuously injected in the reaction environment. Finally, in chapter 5 we further generalize the theory to general phase-space dynamics, possibly damped. The second part of the work (chs. 6-8) is devoted to stochastic systems. In chapter 6 we move the first steps towards the model reduction of stochastic chemical kinetics. Specifically, we show the existence of geometric structures (in the space of the number of molecules of each species) analogous to the Slow Manifold in the macroscopic counterpart. Still in the context of stochastic chemical kinetics, in chapter 7 we make a critical study of two common continuous approximations of the chemical master equation and of the associated Gillespie's stochastic simulation algorithm; namely, we investigate on the physical reliability of the chemical Fokker-Planck and chemical Langevin equations. In particular, we prove that both the approximations suffer from nonphysical probability currents at equilibrium, even for fully reversible and detailed-balanced chemical reaction networks. Finally, in chapter 8 we focus on general overdamped fluctuating systems, which, apart from very simple and low-dimensional cases, are often mathematically intractable. In this context, given the well-known difficulties for the mathematical treatment of such systems, we aim only at achieving a partial, but easily computable, information. Namely, we devise a set of mathematical time-dependent bounds for key-quantities describing the systems of interest.

Nelle moderne scienze fisiche e chimiche, uno sforzo considerevole è dedicato allo studio di fenomeni dinamici complessi. Tale studio è spesso ostacolato dalla considerevole complessità (dovuta all'elevata dimensionalità) dei sistemi di interesse. In questo progetto di ricerca, di carattere teorico e metodologico, esploriamo alcuni aspetti riguardanti la riduzione della dimensionalità e la semplificazione di dinamiche complesse, sia deterministiche che stocastiche. In particolare, la prima parte del lavoro (capitoli 2-5), si concentra su sistemi deterministici. Nel capitolo 2, partendo dai risultati ottenuti in due precedenti lavori [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234101 (2013) and P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] introduciamo il concetto di "forma canonica" della legge di evoluzione per cinetiche chimiche basate sulla legge di azione di massa, e mostriamo che lo studio di tali forme può condurre alla scoperta di nuove interessanti proprietà e alla razionalizzazione di altre già note. Specificamente, mostriamo l'esistenza di "sottospazi attrattivi" in una rappresentazione astratta (ipersferica) della dinamica del sistema reagente. Nel capitolo 3, basandoci sulla teoria formulata nel capitolo 2, sviluppiamo un algoritmo (implementato nel software DRIMAK, acronimo di Dimensional Reduction for Isothermal Mass-Action Kinetics) finalizzato alla localizzazione di punti prossimi allo Slow Manifold, ossia all’ipersuperficie, nello spazio delle concentrazioni, in prossimità della quale ha luogo la parte lenta dell'evoluzione. L'individuazione dello Slow Manifold per un sistema reagente è potenzialmente un passaggio chiave per elaborare strategie di riduzione di dimensionalità. Nel capitolo 4 estendiamo la teoria a network aperti di reazioni chimiche, ossia a casi in cui uno o più reagenti sono continuamente immessi nell'ambiente di reazione. Infine, nel capitolo 5 generalizziamo ulteriormente la teoria a dinamiche (anche smorzate) nello spazio delle fasi. La seconda parte del lavoro (capitoli 6-8) è dedicata ai sistemi stocastici. Nel capitolo 6 muoviamo i primi passi verso la riduzione di dimensionalità di cinetiche chimiche stocastiche. Specificamente, mostriamo l'esistenza di strutture geometriche (nello spazio dei numeri di molecole per ogni specie) analoghe agli Slow Manifold nella controparte macroscopica. Ancora nel contesto delle cinetiche chimiche stocastiche, nel capitolo 7 mostriamo i risultati di uno studio critico di due comuni approssimazioni continue della ‘chemical master equation’ e dell'algoritmo di simulazione di Gillespie, ossia, le cosiddette equazioni di Fokker-Planck e di Langevin “chimiche”. In particolare, dimostriamo che entrambe le approssimazioni soffrono di una inconsistenza fisica che si manifesta nella presenza di correnti di probabilità spurie all'equilibrio, anche per network di reazioni chimiche completamente reversibili e verificanti il bilancio dettagliato. Infine, nel capitolo 8 ci concentriamo su sistemi fluttuanti sovrasmorzati di tipo generale, i quali, a parte casi molto semplici e a bassa dimensionalità, sono spesso matematicamente intrattabili. In questo contesto miriamo ad ottenere solo un'informazione parziale, ma con basso costo computazionale, sullo stato futuro del sistema. In particolare, otteniamo una serie di disuguaglianze che consentono di vincolare alcune quantità rilevanti del sistema.

Approaches to dimensionality reduction and model simplification of dynamics in the chemical context / Ceccato, Alessandro. - (2018 Nov 30).

Approaches to dimensionality reduction and model simplification of dynamics in the chemical context

Ceccato, Alessandro
2018

Abstract

Nelle moderne scienze fisiche e chimiche, uno sforzo considerevole è dedicato allo studio di fenomeni dinamici complessi. Tale studio è spesso ostacolato dalla considerevole complessità (dovuta all'elevata dimensionalità) dei sistemi di interesse. In questo progetto di ricerca, di carattere teorico e metodologico, esploriamo alcuni aspetti riguardanti la riduzione della dimensionalità e la semplificazione di dinamiche complesse, sia deterministiche che stocastiche. In particolare, la prima parte del lavoro (capitoli 2-5), si concentra su sistemi deterministici. Nel capitolo 2, partendo dai risultati ottenuti in due precedenti lavori [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234101 (2013) and P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] introduciamo il concetto di "forma canonica" della legge di evoluzione per cinetiche chimiche basate sulla legge di azione di massa, e mostriamo che lo studio di tali forme può condurre alla scoperta di nuove interessanti proprietà e alla razionalizzazione di altre già note. Specificamente, mostriamo l'esistenza di "sottospazi attrattivi" in una rappresentazione astratta (ipersferica) della dinamica del sistema reagente. Nel capitolo 3, basandoci sulla teoria formulata nel capitolo 2, sviluppiamo un algoritmo (implementato nel software DRIMAK, acronimo di Dimensional Reduction for Isothermal Mass-Action Kinetics) finalizzato alla localizzazione di punti prossimi allo Slow Manifold, ossia all’ipersuperficie, nello spazio delle concentrazioni, in prossimità della quale ha luogo la parte lenta dell'evoluzione. L'individuazione dello Slow Manifold per un sistema reagente è potenzialmente un passaggio chiave per elaborare strategie di riduzione di dimensionalità. Nel capitolo 4 estendiamo la teoria a network aperti di reazioni chimiche, ossia a casi in cui uno o più reagenti sono continuamente immessi nell'ambiente di reazione. Infine, nel capitolo 5 generalizziamo ulteriormente la teoria a dinamiche (anche smorzate) nello spazio delle fasi. La seconda parte del lavoro (capitoli 6-8) è dedicata ai sistemi stocastici. Nel capitolo 6 muoviamo i primi passi verso la riduzione di dimensionalità di cinetiche chimiche stocastiche. Specificamente, mostriamo l'esistenza di strutture geometriche (nello spazio dei numeri di molecole per ogni specie) analoghe agli Slow Manifold nella controparte macroscopica. Ancora nel contesto delle cinetiche chimiche stocastiche, nel capitolo 7 mostriamo i risultati di uno studio critico di due comuni approssimazioni continue della ‘chemical master equation’ e dell'algoritmo di simulazione di Gillespie, ossia, le cosiddette equazioni di Fokker-Planck e di Langevin “chimiche”. In particolare, dimostriamo che entrambe le approssimazioni soffrono di una inconsistenza fisica che si manifesta nella presenza di correnti di probabilità spurie all'equilibrio, anche per network di reazioni chimiche completamente reversibili e verificanti il bilancio dettagliato. Infine, nel capitolo 8 ci concentriamo su sistemi fluttuanti sovrasmorzati di tipo generale, i quali, a parte casi molto semplici e a bassa dimensionalità, sono spesso matematicamente intrattabili. In questo contesto miriamo ad ottenere solo un'informazione parziale, ma con basso costo computazionale, sullo stato futuro del sistema. In particolare, otteniamo una serie di disuguaglianze che consentono di vincolare alcune quantità rilevanti del sistema.
30-nov-2018
Much of the effort in the modern chemical and physical sciences is devoted to the study of complex dynamical phenomena. Such a study is often hampered by the considerable complexity (i.e., the high dimensionality) exhibited by the systems of interest. In this research project, of theoretical and methodological character, we explore some facets of the topics of model reduction and simplification of complex dynamics, both deterministic and stochastic. In particular, in the first part of the work (chs. 2-5), we focus on deterministic systems. In chapter 2, starting from the findings of two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234101 (2013) and P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] we introduce the concept of "canonical format" of the evolution law for mass-action-based chemical kinetics, and show that the study of such a type of formats could lead to the discovery of new interesting features and to a rationalization of already well-known ones. Specifically, we unveil the existence of "attracting subspaces" in an abstract "hyper-spherical" representation of the dynamics of a reacting system. In chapter 3, based on the theory devised in ch. 2, we develop an algorithm (implemented in the companion software DRIMAK, acronym of Dimensional Reduction for Isothermal Mass-Action Kinetics) aimed at detecting the neighborhood of the Slow Manifold, which is a hypersurface, in the concentration space, in the proximity of which the slow evolution takes place. The detection of the Slow Manifold for a reacting system is a potential key-step to elaborate dimensionality reduction strategies. In chapter 4 we extend the theory to open reaction networks, i.e., reaction networks with one or more reactants continuously injected in the reaction environment. Finally, in chapter 5 we further generalize the theory to general phase-space dynamics, possibly damped. The second part of the work (chs. 6-8) is devoted to stochastic systems. In chapter 6 we move the first steps towards the model reduction of stochastic chemical kinetics. Specifically, we show the existence of geometric structures (in the space of the number of molecules of each species) analogous to the Slow Manifold in the macroscopic counterpart. Still in the context of stochastic chemical kinetics, in chapter 7 we make a critical study of two common continuous approximations of the chemical master equation and of the associated Gillespie's stochastic simulation algorithm; namely, we investigate on the physical reliability of the chemical Fokker-Planck and chemical Langevin equations. In particular, we prove that both the approximations suffer from nonphysical probability currents at equilibrium, even for fully reversible and detailed-balanced chemical reaction networks. Finally, in chapter 8 we focus on general overdamped fluctuating systems, which, apart from very simple and low-dimensional cases, are often mathematically intractable. In this context, given the well-known difficulties for the mathematical treatment of such systems, we aim only at achieving a partial, but easily computable, information. Namely, we devise a set of mathematical time-dependent bounds for key-quantities describing the systems of interest.
dimensionality reduction / riduzione di dimensionalità embedding into Lotka-Volterra form / rappresentazione in forma di Lotka-Volterra chemical kinetics / cinetica chimica open reaction networks / network aperti di reazioni chimiche Slow Manifold / Slow Manifold stochastic chemical kinetics / cinetica chimica stocastica chemical Langevin equation / equazione di Langevin "chimica" chemical Fokker-Planck equation / equazione di Fokker-Planck "chimica"
Approaches to dimensionality reduction and model simplification of dynamics in the chemical context / Ceccato, Alessandro. - (2018 Nov 30).
File in questo prodotto:
File Dimensione Formato  
ceccato_alessandro_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 19.37 MB
Formato Adobe PDF
19.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3426709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact