Electron and nuclear magnetic spectroscopies are powerful tools for studying molecular dynamics, being particularly sensitive to motions with relaxation times in the range of 10−9 - 10−6 s. This time window includes rigid body motions in fluids and ”soft” internal motions of molecules. Moreover, dynamics in this range comprehend proteins internal motions responsible for relevant chemical-physical properties, like substrate recognition, activity and folding. In a typical electron spin resonance (ESR) experiment molecular motions affect considerably the shape of the spectral line. In a nuclear magnetic resonance (NMR) experiment characteristic relaxations times of the spin magnetization, i.e. T1, T2 and NOE, are directly affected by internal mobility. The aim of this Ph.D. work is the implementation of integrated theoretical / computational methodologies for characterization of dynamical properties of molecules gathered from ESR and NMR measurements. The starting point is a ”time coarse-graining” procedure that leads to simplified models in which we introduce only dynamical characteristics that are relevant to the physical observables considered. In particular, stochastic models are employed, based on a number of structural parameters which are calculated. The idea is to treat these parameters at atomistic and / or mesoscopic level depending on their nature. Software packages have been developed, comprehending E-SpiReS (Electron Spin Resonance Simulation) for cw-ESR simulations, C++OPPS (COupled Probe Protein Smoluchowski) for NMR simulations and DITE (DIffusion TEnsor) for the evaluation of dissipative properties of molecules. These programs have been built as user-friendly tools targeted for use by experimentalists, as a kind of in silico extension of the laboratory equipment.
Tecniche efficaci nello studio della dinamica molecolare sono le spettroscopie di risonanza elettronica e nucleare, essendo particolarmente sensibili a moti caratterizzati da scale dei tempi nell'intervallo da 10^-9 a 10^-6 s, nel quale rientrano sia i moti globali (di corpo rigido), sia le dinamiche interne di molecole in soluzione. E' da notare che questa finestra comprende anche la dinamica delle proteine, responsabile di proprieta' chimico-fisiche molto importanti, quali il riconoscimento del substrato, l'attivita' ed il folding. Tipicamente, in un esperimento di risonanza di spin elettronico (RSE) i moti molecolari sono responsabili dell'allargamento inomogeneo delle righe spettrali. Per quanto riguarda la risonanza magnetica nucleare (RMN), invece, la dinamica molecolare influisce sui rilassamenti T1, T2 e NOE. Lo scopo di questo lavoro e' l'implementazione di metodologie integrate teorico / computazionali per la caratterizzazione della dinamica molecolare a partire da misure RSE e RMN. In particolare, si proiettano i moti non importanti (''time coarse-graining''), ottenendo modelli per la dinamica relativamente semplici, che descrivono esclusivamente i moti rilevanti rispetto all'osservabile fisico in esame. In particolare, si impiegano modelli stocastici nei quali intervengono anche parametri strutturali che devono essere calcolati. Questi ultimi sono descritti a livello atomistico e / o mesoscopico in base alla loro natura. Sono stati sviluppati tre nuovi programmi: E-SpiReS (Electron Spin Resonance Simulation) per la simulazione di spettri RSE in onda continua, C++OPPS (COupled Protein Probe Smoluchowski) per simulazioni di misure di RMN e DITE (DIffusion TEnsor) per il calcolo di proprieta' dissipative di molecole con gradi di liberta' interni. Nell'implementazione dei programmi si e' fatto attenzione alla semplicita' d'uso, occupandosi anche dello sviluppo di interfacce grafiche, con l'obiettivo di affiancare i programmi alla strumentazione di laboratorio, come una sorta di estensione ''in silico'' della stessa.
Advanced computational tools for the interpretation of magnetic resonance spectroscopies / Zerbetto, Mirco. - (2009 Feb 02).
Advanced computational tools for the interpretation of magnetic resonance spectroscopies
Zerbetto, Mirco
2009
Abstract
Tecniche efficaci nello studio della dinamica molecolare sono le spettroscopie di risonanza elettronica e nucleare, essendo particolarmente sensibili a moti caratterizzati da scale dei tempi nell'intervallo da 10^-9 a 10^-6 s, nel quale rientrano sia i moti globali (di corpo rigido), sia le dinamiche interne di molecole in soluzione. E' da notare che questa finestra comprende anche la dinamica delle proteine, responsabile di proprieta' chimico-fisiche molto importanti, quali il riconoscimento del substrato, l'attivita' ed il folding. Tipicamente, in un esperimento di risonanza di spin elettronico (RSE) i moti molecolari sono responsabili dell'allargamento inomogeneo delle righe spettrali. Per quanto riguarda la risonanza magnetica nucleare (RMN), invece, la dinamica molecolare influisce sui rilassamenti T1, T2 e NOE. Lo scopo di questo lavoro e' l'implementazione di metodologie integrate teorico / computazionali per la caratterizzazione della dinamica molecolare a partire da misure RSE e RMN. In particolare, si proiettano i moti non importanti (''time coarse-graining''), ottenendo modelli per la dinamica relativamente semplici, che descrivono esclusivamente i moti rilevanti rispetto all'osservabile fisico in esame. In particolare, si impiegano modelli stocastici nei quali intervengono anche parametri strutturali che devono essere calcolati. Questi ultimi sono descritti a livello atomistico e / o mesoscopico in base alla loro natura. Sono stati sviluppati tre nuovi programmi: E-SpiReS (Electron Spin Resonance Simulation) per la simulazione di spettri RSE in onda continua, C++OPPS (COupled Protein Probe Smoluchowski) per simulazioni di misure di RMN e DITE (DIffusion TEnsor) per il calcolo di proprieta' dissipative di molecole con gradi di liberta' interni. Nell'implementazione dei programmi si e' fatto attenzione alla semplicita' d'uso, occupandosi anche dello sviluppo di interfacce grafiche, con l'obiettivo di affiancare i programmi alla strumentazione di laboratorio, come una sorta di estensione ''in silico'' della stessa.File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Accesso gratuito
Dimensione
20.44 MB
Formato
Adobe PDF
|
20.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.