The advent of functional Magnetic Resonance Imaging (fMRI) has significantly improved the knowledge about the neural correlates of perceptual and cognitive processes. The aim of this thesis is to discuss the characteristics of different approaches for fMRI data analysis, from the conventional mass univariate analysis (General Linear Model - GLM), to the multivariate analysis (i.e., data-driven and pattern based methods), and propose a novel, advanced method (Functional ANOVA Models of Gaussian Kernels - FAM-GK) for the analysis of fMRI data acquired in the context of fast event-related experiments. FAM-GK is an embedded method for voxel selection and is able to capture the nonlinear spatio-temporal dynamics of the BOLD signals by performing nonlinear estimation of the experimental conditions. The impact of crucial aspects concerning the use of pattern recognition methods on the fMRI data analysis, such as voxel selection, the choice of classifier and tuning parameters, the cross-validation techniques, are investigated and discussed by analysing the results obtained in four neuroimaging case studies. In a first study, we explore the robustness of nonlinear Support Vector regression (SVR), combined with a filter approach for voxel selection, in the case of an extremely complex regression problem, in which we had to predict the subjective experience of participants immersed in a virtual reality environment. In a second study, we face the problem of voxel selection combined with the choice of the best classifier, and we propose a methodology based on genetic algorithms and nonlinear support vector machine (GA-SVM) efficiently combined in a wrapper approach. In a third study we compare three pattern recognition techniques (i.e., linear SVM, nonlinear SVM, and FAM-GK) for investigating the neural correlates of the representation of numerical and non-numerical ordered sequences (i.e., numbers and letters) in the horizontal segment of the Intraparietal Sulcus (hIPS). The FAM-GK method significantly outperformed the other two classifiers. The results show a partial overlapping of the two representation systems suggesting the existence of neural substrates in hIPS codifying the cardinal and the ordinal dimensions of numbers and letters in a partially independent way. Finally, in the last preliminary study, we tested the same three pattern recognition methods on fMRI data acquired in the context of a fast event-related experiment. The FAM-GK method shows a very high performance, whereas the other classifiers fail to achieve an acceptable classification performance.
L’avvento della tecnica di Risonanza Magnetica funzionale (fMRI) ha notevolmente migliorato le conoscenze sui correlati neurali sottostanti i processi cognitivi. Obiettivo di questa tesi è stato quello di illustrare e discutere criticamente le caratteristiche dei diversi approcci per l’analisi dei dati fMRI, dai metodi convenzionali di analisi univariata (General Linear Model - GLM) ai metodi di analisi multivariata (metodi data-driven e di pattern recognition), proponendo una nuova tecnica avanzata (Functional ANOVA Models of Gaussian Kernels - FAM-GK) per l’analisi di dati fMRI acquisiti con paradigmi sperimentali fast event-related. FAM-GK è un metodo embedded per la selezione dei voxels, che è in grado di catturare le dinamiche non lineari spazio-temporali del segnale BOLD, effettuando stime non lineari delle condizioni sperimentali. L’impatto degli aspetti critici riguardanti l’uso di tecniche di pattern recognition sull’analisi di dati fMRI, tra cui la selezione dei voxels, la scelta del classificatore e dei suoi parametri di apprendimento, le tecniche di cross-validation, sono valutati e discussi analizzando i risultati ottenuti in quattro casi di studio. In un primo studio, abbiamo indagato la robustezza di Support Vector regression (SVR) non lineare, integrato con un approccio di tipo filter per la selezione dei voxels, in un caso di un problema di regressione estremamente complesso, in cui dovevamo predire l’esperienza soggettiva di alcuni partecipanti immersi in un ambiente di realtà virtuale. In un secondo studio, abbiamo affrontato il problema della selezione dei voxels integrato con la scelta del miglior classificatore, proponendo un metodo basato sugli algoritmi genetici e SVM non lineare (GA-SVM) in un approccio di tipo wrapper. In un terzo studio, abbiamo confrontato tre metodi di pattern recognition (SVM lineare, SVM non lineare e FAM-GK) per indagare i correlati neurali della rappresentazione di sequenze ordinate numeriche e non-numeriche (numeri e lettere) a livello del segmento orizzontale del solco intraparitale (hIPS). Le prestazioni di classificazione di FAM-GK sono risultate essere significativamente superiori rispetto a quelle degli alti due classificatori. I risultati hanno mostrato una parziale sovrapposizione dei due sistemi di rappresentazione, suggerendo l’esistenza di substrati neurali nelle regioni hIPS che codificano le dimensioni cardinale e ordinale dei numeri e delle lettere in modo parzialmente indipendente. Infine, nel quarto studio preliminare, abbiamo testato e confrontato gli stessi tre classificatori su dati fMRI acquisiti durante un esperimento fast event-related. FAM-GK ha mostrato delle prestazioni di classificazione piuttosto elevate, mentre le prestazioni degli altri due classificatori sono risultate essere di poco superiori al caso.
Beyond mind reading: advanced machine learning techniques for FMRI data analysis / Di Bono, Maria Grazia. - (2009).
Beyond mind reading: advanced machine learning techniques for FMRI data analysis
Di Bono, Maria Grazia
2009
Abstract
L’avvento della tecnica di Risonanza Magnetica funzionale (fMRI) ha notevolmente migliorato le conoscenze sui correlati neurali sottostanti i processi cognitivi. Obiettivo di questa tesi è stato quello di illustrare e discutere criticamente le caratteristiche dei diversi approcci per l’analisi dei dati fMRI, dai metodi convenzionali di analisi univariata (General Linear Model - GLM) ai metodi di analisi multivariata (metodi data-driven e di pattern recognition), proponendo una nuova tecnica avanzata (Functional ANOVA Models of Gaussian Kernels - FAM-GK) per l’analisi di dati fMRI acquisiti con paradigmi sperimentali fast event-related. FAM-GK è un metodo embedded per la selezione dei voxels, che è in grado di catturare le dinamiche non lineari spazio-temporali del segnale BOLD, effettuando stime non lineari delle condizioni sperimentali. L’impatto degli aspetti critici riguardanti l’uso di tecniche di pattern recognition sull’analisi di dati fMRI, tra cui la selezione dei voxels, la scelta del classificatore e dei suoi parametri di apprendimento, le tecniche di cross-validation, sono valutati e discussi analizzando i risultati ottenuti in quattro casi di studio. In un primo studio, abbiamo indagato la robustezza di Support Vector regression (SVR) non lineare, integrato con un approccio di tipo filter per la selezione dei voxels, in un caso di un problema di regressione estremamente complesso, in cui dovevamo predire l’esperienza soggettiva di alcuni partecipanti immersi in un ambiente di realtà virtuale. In un secondo studio, abbiamo affrontato il problema della selezione dei voxels integrato con la scelta del miglior classificatore, proponendo un metodo basato sugli algoritmi genetici e SVM non lineare (GA-SVM) in un approccio di tipo wrapper. In un terzo studio, abbiamo confrontato tre metodi di pattern recognition (SVM lineare, SVM non lineare e FAM-GK) per indagare i correlati neurali della rappresentazione di sequenze ordinate numeriche e non-numeriche (numeri e lettere) a livello del segmento orizzontale del solco intraparitale (hIPS). Le prestazioni di classificazione di FAM-GK sono risultate essere significativamente superiori rispetto a quelle degli alti due classificatori. I risultati hanno mostrato una parziale sovrapposizione dei due sistemi di rappresentazione, suggerendo l’esistenza di substrati neurali nelle regioni hIPS che codificano le dimensioni cardinale e ordinale dei numeri e delle lettere in modo parzialmente indipendente. Infine, nel quarto studio preliminare, abbiamo testato e confrontato gli stessi tre classificatori su dati fMRI acquisiti durante un esperimento fast event-related. FAM-GK ha mostrato delle prestazioni di classificazione piuttosto elevate, mentre le prestazioni degli altri due classificatori sono risultate essere di poco superiori al caso.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Maria_Grazia_Di_Bono.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.