In the last years, the telecommunications industry has seen an increasing interest in the development of advanced solutions that enable communicating nodes to exchange large amounts of data. Indeed, well-known applications such as VoIP, audio streaming, video on demand, real-time surveillance systems, safety vehicular requirements, and remote computing have increased the demand for the efficient generation, utilization, management and communication of larger and larger data quantities. New transmission technologies have been developed to permit more efficient and faster data exchanges, including multiple input multiple output architectures or software defined networking: as an example, the next generation of mobile communication, known as 5G, is expected to provide data rates of tens of megabits per second for tens of thousands of users and only 1 ms latency. In order to achieve such demanding performance, these systems need to effectively model the considerable level of uncertainty related to fading transmission channels, interference, or the presence of noise in the data. In this thesis, we will present how different approaches can be adopted to model these kinds of scenarios, focusing on wireless networking applications. In particular, the first part of this work will show how stochastic optimization models can be exploited to design energy management policies for wireless sensor networks. Traditionally, transmission policies are designed to reduce the total amount of energy drawn from the batteries of the devices; here, we consider energy harvesting wireless sensor networks, in which each device is able to scavenge energy from the environment and charge its battery with it. In this case, the goal of the optimal transmission policies is to efficiently manage the energy harvested from the environment, avoiding both energy outage (i.e., no residual energy in a battery) and energy overflow (i.e., the impossibility to store scavenged energy when the battery is already full). In the second part of this work, we will explore the adoption of machine learning techniques to tackle a number of common wireless networking problems. These algorithms are able to learn from and make predictions on data, avoiding the need to follow limited static program instructions: models are built from sample inputs, thus allowing for data-driven predictions and decisions. In particular, we will first design an on-the-fly prediction algorithm for the expected time of arrival related to WiFi transmissions. This predictor only exploits those network parameters available at each receiving node and does not require additional knowledge from the transmitter, hence it can be deployed without modifying existing standard transmission protocols. Secondly, we will investigate the usage of particular neural network instances known as autoencoders for the compression of biosignals, such as electrocardiography and photo plethysmographic sequences. A lightweight lossy compressor will be designed, able to be deployed in wearable battery-equipped devices with limited computational power. Thirdly, we will propose a predictor for the long-term channel gain in a wireless network. Differently from other works in the literature, such predictor will only exploit past channel samples, without resorting to additional information such as GPS data. An accurate estimation of this gain would enable to, e.g., efficiently allocate resources and foretell future handover procedures. Finally, although not strictly related to wireless networking scenarios, we will show how deep learning techniques can be applied to the field of autonomous driving. This final section will deal with state-of-the-art machine learning solutions, proving how these techniques are able to considerably overcome the performance given by traditional approaches.
Scopo di questa tesi è quello di presentare come sia possibile modellizzare il considerevole livello di incertezza proprio dei moderni sistemi di telecomunicazioni attraverso differenti approcci. Il primo è basato su modelli di ottimizzazione stocastici, e verrà adottato per la progettazione di politiche di trasmissione in particolari reti di sensori wireless, dotate di apparati in grado di recuperare energia dall'ambiente. Il secondo approccio verte sull'utilizzo di tecniche di apprendimento automatico applicate alla stima di parametri di rete, alla compressione di segnali biomedici e alla predizione del guadagno di canale in reti mobili.
Stochastic Optimization and Machine Learning Modeling for Wireless Networking / Del Testa, Davide. - (2017 Jan).
Stochastic Optimization and Machine Learning Modeling for Wireless Networking
Del Testa, Davide
2017
Abstract
Scopo di questa tesi è quello di presentare come sia possibile modellizzare il considerevole livello di incertezza proprio dei moderni sistemi di telecomunicazioni attraverso differenti approcci. Il primo è basato su modelli di ottimizzazione stocastici, e verrà adottato per la progettazione di politiche di trasmissione in particolari reti di sensori wireless, dotate di apparati in grado di recuperare energia dall'ambiente. Il secondo approccio verte sull'utilizzo di tecniche di apprendimento automatico applicate alla stima di parametri di rete, alla compressione di segnali biomedici e alla predizione del guadagno di canale in reti mobili.File | Dimensione | Formato | |
---|---|---|---|
DelTesta_PhD_Thesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Accesso gratuito
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.