The PhD project has been performed in the Surfaces and Catalysts group active in the Department of Chemical Sciences, within the frame of the grant “A rational approach to the optimization of efficient electrocatalysts for the next generation Fuel Cells”, funded by CARIPARO foundation. The project has been focused on the preparation and characterization of new carbon-based materials for applications in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), also known as oxygen-hydrogen FCs. The preparation of the materials has been performed using different techniques, depending on the type of the target material and on the possible applications that these materials can offer. With reference to the studied model systems (Highly Oriented Pyrolytic Graphite (HOPG) and Glassy Carbon (GC)), the introduction of doping heteroatoms has been performed by ion implantation, while the study of new chemical functionalities has been allowed by the use of Wet Chemistry techniques, in particular derived from the electrochemical synthesis. The deposition of thin films or nanoparticles (metal or oxides of transition metals) on the ion-modified materials has been carried out in-situ by using advanced techniques under Ultra High Vacuum conditions (UHV), such as Physical Vapor Deposition (PVD). Within the study of the model systems, PVD was chosen because of its ability to provide an atomic scale control of the metal deposition. In a second time, conventional deposition techniques such as chemical or electrochemical reduction of suitable metal precursors have been performed, in a synergistic combination between Surface Science and Electrochemistry-derived techniques. The characterization of these materials has been performed using the facilities of the Surface Science group, such as the X-ray and Ultraviolet Photoelectron Spectroscopy (XPS - UPS), Scanning Tunneling and Atomic Force Microscopy (STM - AFM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Low Energy Electron Diffraction (LEED). To get a deeper insight in the chemistry/structure/properties of the prepared systems, synchrotron light-based techniques such as HR-XPS, NEXAFS, ARPES, ResPES and PEEM have been extensively used. The study of the electro-catalytic activity has been performed using conventional Electrochemistry techniques, in particular Cyclic and Linear Sweep Voltammetry (CV - LSV), as well as electro-dynamic techniques such as Rotating Disk Electrode (RDE). Finally, in order to support the experimental data or to bring their understanding at a deeper level, simulations using Density Functional Theory (DFT) have been performed in collaboration with the group coordinated by Prof. Cristiana Di Valentin (University of Milano Bicocca). During the course of the doctorate, several collaborations have been pursued with other research groups operating in the Department of Chemical Sciences or abroad, such as the "Interfaces and Energy Conversion E19" research unit, Technical University of Munich (TUM, Germany), coordinated by Profs. O. Schneider and J. Kunze-Liebhäuser.

Il progetto di dottorato nasce all’interno del gruppo di ricerca di Superfici e Catalizzatori operante nel dipartimento di Scienze Chimiche, nell’ambito della borsa a titolo vincolato “Un approccio razionale alla ottimizzazione di elettrocatalizzatori efficienti per le celle a combustibile di nuova generazione”, finanziata da fondazione CARIPARO. Le tematica è stata focalizzata sulla preparazione e caratterizzazione di nuovi materiali a base di carbonio utilizzabili per applicazioni in celle a combustibile di tipo PEMFCs (Polymer Electrolyte Membrane Fuel Cells) ad ossigeno-idrogeno. La preparazione dei materiali è avvenuta facendo uso di differenti tecniche, in relazione al tipo di materiale oggetto di studio ed alle applicazioni che tali materiali possono offrire. Con riferimento allo studio dei sistemi modello (grafite pirolitica altamente orientata, HOPG, e carbonio vetroso, GC), il drogaggio degli stessi mediante l’introduzione di eteroatomi (in particolare azoto) è avvenuto ricorrendo alla tecnica dell’impiantazione ionica, mentre lo studio di nuove funzionalità chimiche è stato permesso dall’utilizzo di tecniche di Wet Chemistry, in particolare mutuate dalla sintesi elettrochimica. La deposizione di film sottili o di nanoparticelle (metalliche o a base di ossidi di metalli di transizione) su tali materiali modificati è stata effettuata facendo uso di tecniche avanzate come la deposizione fisica da fase vapore (PVD) in condizioni controllate di Ultra Alto Vuoto (UHV), in grado di offrire un controllo su scala atomica della deposizione di tali film. Sono state utilizzate anche tecniche di deposizione tradizionali quali la riduzione chimica o elettrochimica di opportuni precursori metallici: l‘utilizzazione di una siffatta combinazione sinergica tra tali differenti tecniche di preparazione ha permesso di ottenere materiali caratterizzati da strutture e proprietà peculiari. La caratterizzazione di tali materiali è svolta utilizzando le facilities del gruppo di Scienza delle Superfici, come la spettroscopia di fotoelettroni (XPS) o della banda di valenza (UPS), la microscopia ad effetto tunnel o a forza atomica (STM - AFM), la microscopia elettronica e la dispersione energetica dei raggi X indotta dagli elettroni (SEM-EDX), la diffrazione di elettroni lenti (LEED). Allo scopo di caratterizzare maggiormente in dettaglio la struttura e le proprietà chimiche dei materiali preparati sono state usate estensivamente le tecniche di indagine offerte dalla luce di sincrotrone (HR-XPS, NEXAFS, ARPES, ResPES, PEEM), mentre lo studio della reattività catalitica si basa su tecniche derivate dall’analisi elettrochimica, in particolare la voltammetria ciclica ed a scansione lineare del potenziale applicato, nonchè tecniche elettro-dinamiche come la voltammetria su elettrodo rotante. Infine, allo scopo di supportare i dati sperimentali o portare la comprensione delle proprietà dei materiali ad un livello più profondo, simulazioni mediante teoria del funzionale densità (DFT) sono state adottate per un approccio critico allo studio dei materiali preparati (in collaborazione con il gruppo coordinato dalla prof. Cristiana Di Valentin, Università di Milano Bicocca). Durante il corso del dottorato, diverse collaborazioni sono state perseguite con gruppi interni al Dipartimento di Scienze Chimiche o anche Esteri, come l’unità di ricerca “Interfaces and Energy Conversion E19”, dell’università tecnica di Monaco di Baviera (TUM, Technische Universität München, Germania), coordinata dai proff. O. Schneider e J. Kunze-Liebhäuser.

A rational approach to the optimization of efficient electrocatalysts for the next generation Fuel Cells / Favaro, Marco. - (2014 Dec 02).

A rational approach to the optimization of efficient electrocatalysts for the next generation Fuel Cells

Favaro, Marco
2014

Abstract

Il progetto di dottorato nasce all’interno del gruppo di ricerca di Superfici e Catalizzatori operante nel dipartimento di Scienze Chimiche, nell’ambito della borsa a titolo vincolato “Un approccio razionale alla ottimizzazione di elettrocatalizzatori efficienti per le celle a combustibile di nuova generazione”, finanziata da fondazione CARIPARO. Le tematica è stata focalizzata sulla preparazione e caratterizzazione di nuovi materiali a base di carbonio utilizzabili per applicazioni in celle a combustibile di tipo PEMFCs (Polymer Electrolyte Membrane Fuel Cells) ad ossigeno-idrogeno. La preparazione dei materiali è avvenuta facendo uso di differenti tecniche, in relazione al tipo di materiale oggetto di studio ed alle applicazioni che tali materiali possono offrire. Con riferimento allo studio dei sistemi modello (grafite pirolitica altamente orientata, HOPG, e carbonio vetroso, GC), il drogaggio degli stessi mediante l’introduzione di eteroatomi (in particolare azoto) è avvenuto ricorrendo alla tecnica dell’impiantazione ionica, mentre lo studio di nuove funzionalità chimiche è stato permesso dall’utilizzo di tecniche di Wet Chemistry, in particolare mutuate dalla sintesi elettrochimica. La deposizione di film sottili o di nanoparticelle (metalliche o a base di ossidi di metalli di transizione) su tali materiali modificati è stata effettuata facendo uso di tecniche avanzate come la deposizione fisica da fase vapore (PVD) in condizioni controllate di Ultra Alto Vuoto (UHV), in grado di offrire un controllo su scala atomica della deposizione di tali film. Sono state utilizzate anche tecniche di deposizione tradizionali quali la riduzione chimica o elettrochimica di opportuni precursori metallici: l‘utilizzazione di una siffatta combinazione sinergica tra tali differenti tecniche di preparazione ha permesso di ottenere materiali caratterizzati da strutture e proprietà peculiari. La caratterizzazione di tali materiali è svolta utilizzando le facilities del gruppo di Scienza delle Superfici, come la spettroscopia di fotoelettroni (XPS) o della banda di valenza (UPS), la microscopia ad effetto tunnel o a forza atomica (STM - AFM), la microscopia elettronica e la dispersione energetica dei raggi X indotta dagli elettroni (SEM-EDX), la diffrazione di elettroni lenti (LEED). Allo scopo di caratterizzare maggiormente in dettaglio la struttura e le proprietà chimiche dei materiali preparati sono state usate estensivamente le tecniche di indagine offerte dalla luce di sincrotrone (HR-XPS, NEXAFS, ARPES, ResPES, PEEM), mentre lo studio della reattività catalitica si basa su tecniche derivate dall’analisi elettrochimica, in particolare la voltammetria ciclica ed a scansione lineare del potenziale applicato, nonchè tecniche elettro-dinamiche come la voltammetria su elettrodo rotante. Infine, allo scopo di supportare i dati sperimentali o portare la comprensione delle proprietà dei materiali ad un livello più profondo, simulazioni mediante teoria del funzionale densità (DFT) sono state adottate per un approccio critico allo studio dei materiali preparati (in collaborazione con il gruppo coordinato dalla prof. Cristiana Di Valentin, Università di Milano Bicocca). Durante il corso del dottorato, diverse collaborazioni sono state perseguite con gruppi interni al Dipartimento di Scienze Chimiche o anche Esteri, come l’unità di ricerca “Interfaces and Energy Conversion E19”, dell’università tecnica di Monaco di Baviera (TUM, Technische Universität München, Germania), coordinata dai proff. O. Schneider e J. Kunze-Liebhäuser.
2-dic-2014
The PhD project has been performed in the Surfaces and Catalysts group active in the Department of Chemical Sciences, within the frame of the grant “A rational approach to the optimization of efficient electrocatalysts for the next generation Fuel Cells”, funded by CARIPARO foundation. The project has been focused on the preparation and characterization of new carbon-based materials for applications in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), also known as oxygen-hydrogen FCs. The preparation of the materials has been performed using different techniques, depending on the type of the target material and on the possible applications that these materials can offer. With reference to the studied model systems (Highly Oriented Pyrolytic Graphite (HOPG) and Glassy Carbon (GC)), the introduction of doping heteroatoms has been performed by ion implantation, while the study of new chemical functionalities has been allowed by the use of Wet Chemistry techniques, in particular derived from the electrochemical synthesis. The deposition of thin films or nanoparticles (metal or oxides of transition metals) on the ion-modified materials has been carried out in-situ by using advanced techniques under Ultra High Vacuum conditions (UHV), such as Physical Vapor Deposition (PVD). Within the study of the model systems, PVD was chosen because of its ability to provide an atomic scale control of the metal deposition. In a second time, conventional deposition techniques such as chemical or electrochemical reduction of suitable metal precursors have been performed, in a synergistic combination between Surface Science and Electrochemistry-derived techniques. The characterization of these materials has been performed using the facilities of the Surface Science group, such as the X-ray and Ultraviolet Photoelectron Spectroscopy (XPS - UPS), Scanning Tunneling and Atomic Force Microscopy (STM - AFM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Low Energy Electron Diffraction (LEED). To get a deeper insight in the chemistry/structure/properties of the prepared systems, synchrotron light-based techniques such as HR-XPS, NEXAFS, ARPES, ResPES and PEEM have been extensively used. The study of the electro-catalytic activity has been performed using conventional Electrochemistry techniques, in particular Cyclic and Linear Sweep Voltammetry (CV - LSV), as well as electro-dynamic techniques such as Rotating Disk Electrode (RDE). Finally, in order to support the experimental data or to bring their understanding at a deeper level, simulations using Density Functional Theory (DFT) have been performed in collaboration with the group coordinated by Prof. Cristiana Di Valentin (University of Milano Bicocca). During the course of the doctorate, several collaborations have been pursued with other research groups operating in the Department of Chemical Sciences or abroad, such as the "Interfaces and Energy Conversion E19" research unit, Technical University of Munich (TUM, Germany), coordinated by Profs. O. Schneider and J. Kunze-Liebhäuser.
Surface Science, Electrochemistry, Electrocatalysis, Fuel Cells, Graphene, Graphene Oxide, Graphene Quantum Dots, Oxygen Reduction Reaction, Water Remediation, Metal Nanoparticles, Physical Vapor Deposition, Carbon supports, Model supports, Ultra High Vacuum, Synchrotron Radiation, Titania, Titania Nanotubes.
A rational approach to the optimization of efficient electrocatalysts for the next generation Fuel Cells / Favaro, Marco. - (2014 Dec 02).
File in questo prodotto:
File Dimensione Formato  
favaro_marco_thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Accesso gratuito
Dimensione 17.21 MB
Formato Adobe PDF
17.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3424667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact