This Ph.D. dissertation is the result of a three-year research activity focused on structural and seismic engineering applied to innovative timber constructive systems. The main purpose is to give a contribution to international scientific research and current design practice about the seismic behaviour of timber shear-wall systems, which still represent an innovation in the construction industry and are being developed due to their favourable characteristics. An initial overview on the use of main timber structural systems in seismic-prone areas for low- and medium-rise buildings is provided, within the context of current European seismic code. The theme of the seismic design of timber shear-wall systems is discussed in the first part, giving close attention to linear and non-linear modelling criteria: various strategies are proposed and main characteristics are highlighted. Basic definitions and concepts proper of the seismic analysis of timber structures are provided. A particular attention is paid to the definition and application of the capacity design approach and the close link with the concept of behaviour factor is emphasized. Finally, the definition of behaviour factor, as product between an “intrinsic” capacity of the structure and a design over-strength value is proposed. This definition allows to characterize the structural systems with their proper dissipative capacity and to evaluate separately the safety reserve introduced by design. The second part analyses the structural behaviour of the cross-laminated timber (CLT) technology, which represents one of the most common timber structural systems. The concepts of ductility, dissipative capacity, regularity and irregularity applied to CLT system are provided. The seismic response and the dissipative capacity of this system are firstly evaluated via an experimentally based procedure. Then, the evaluation of its intrinsic dissipative capacity is determined via non-linear numerical modelling with the aim of studying the correlation with the construction variables. Results show that the construction design decisions affect the seismic response and dissipative capacity of buildings, as opposed to apply a single behaviour factor value to the whole CLT technology. A statistical analysis applied to numerical results allowed also to propose analytical formulations for the computation of the suitable behaviour factor value for regular buildings. Then, the same analyses carried out on in-elevation non-regular buildings returned a correction factor to account for the reduction in dissipative capacity due to irregularity. The application of the CLT technology to realize high-rise buildings is presented in the third part, analysing the behaviour of slender buildings with seismic resisting core and perimeter shear walls. The major limitations and drawbacks in realizing these structures in areas characterized by high seismic intensity and their implication in the design are reported. The final part presents three novel structural systems as alternative to more common technologies, as CLT or platform frame. These innovative systems are characterized mainly by a diffuse dissipative and deformation capacity when subjected to seismic loads, while in CLT system such capacity is concentrated in connection elements. This different response is studied via quasi-static tests and numerical simulations. In detail, two non-glued massive timber shear walls and a mixed steel-timber wall with an innovative bracing system are presented.

Questa tesi di dottorato è il risultato di tre anni di attività di ricerca in ambito ingegneristico strutturale applicato allo studio di sistemi costruttivi innovativi in legno. Il principale obiettivo è quello di fornire un contributo alla ricerca scientifica internazionale e ai metodi attuali di progettazione in merito alla risposta sismica di sistemi in legno a pareti sismo-resistenti, i quali rappresentano tutt’ora un’innovazione nel settore delle costruzioni e si stanno diffondendo grazie alle loro caratteristiche favorevoli. Una panoramica iniziale sull’utilizzo dei principali sistemi strutturali in legno in zone sismiche per la realizzazione di edifici bassi o di media altezza viene fornita e contestualizzata nella vigente normativa sismica europea. La prima parte della tesi affronta il tema della progettazione sismica di sistemi a pareti in legno, con particolare attenzione ai criteri di modellazione lineare e non lineare, proponendo diverse strategie ed evidenziandone le caratteristiche. In questa parte vengono forniti inoltre definizioni e concetti fondamentali propri dell’analisi sismica di strutture in legno. Un’attenzione particolare è riservata alla definizione e applicazione del “capacity design”, sottolineandone lo stretto legame con il concetto di fattore di struttura. Viene proposta infine una definizione del fattore di struttura come prodotto tra una parte intrinseca alla struttura e una sovraresistenza di progetto. Tale definizione permette di caratterizzare i sistemi strutturali con la propria capacità dissipativa e di valutare separatamente la riserva di sicurezza introdotta dalla progettazione. La seconda parte della tesi analizza il comportamento strutturale della tecnologia X-Lam (CLT), che rappresenta uno dei più comuni sistemi strutturali in legno. In questa parte vengono approfonditi i concetti di duttilità, capacità dissipativa, regolarità e irregolarità applicati al sistema X-Lam. La risposta sismica e la capacità dissipativa di questo sistema sono state preliminarmente valutate tramite una procedura analitico-sperimentale. Modelli numerici non-lineari hanno quindi permesso di valutarne la capacità dissipativa intrinseca in funzione delle variabili costruttive proprie del sistema. I risultati mostrano come le decisioni costruttive in fase di progettazione influenzino la risposta sismica dell’edificio; ciò è in contrasto all’applicazione di un unico valore del fattore di struttura per l’intera tecnologia X-Lam. Un’analisi statistica applicata a tali risultati numerici ha consentito di proporre formulazioni analitiche per il fattore di struttura per edifici regolari in funzione delle caratteristiche dell’edificio stesso. Infine, le stesse analisi condotte su edifici non regolari in altezza hanno fornito un coefficiente per tenere in conto della riduzione di capacità dissipativa a causa dell’irregolarità. Nella terza parte viene presentata un’applicazione della tecnologia X-Lam per costruire edifici alti, analizzando il comportamento di edifici snelli con nucleo sismo-resistente e pareti aggiuntive perimetrali. Vengono riportati inoltre le principali limitazioni e inconvenienti nel realizzare tali strutture in aree caratterizzate da elevata intensità sismica e le loro implicazioni nella progettazione. La parte finale descrive e analizza tre sistemi strutturali in legno innovativi, come alternative a tecnologie più comuni, quali X-Lam o platform-frame. Questi sistemi, soggetti ad azioni sismiche, sono caratterizzati da una capacità deformativa e dissipativa diffusa, al contrario del sistema X-Lam in cui tale capacità è concentrata principalmente negli elementi di connessione. Questa risposta differente è studiata attraverso test sperimentali quasi statici e simulazioni numeriche. In dettaglio, sono presentati e analizzati due sistemi a pareti massicce stratificate; realizzate senza l’uso di colla tra gli strati e una parete ibrida acciaio-legno con un sistema innovativo di controvento.

Insight into seismic behaviour of timber shear-wall systems / Trutalli, Davide. - (2016 Jan 26).

Insight into seismic behaviour of timber shear-wall systems

Trutalli, Davide
2016

Abstract

Questa tesi di dottorato è il risultato di tre anni di attività di ricerca in ambito ingegneristico strutturale applicato allo studio di sistemi costruttivi innovativi in legno. Il principale obiettivo è quello di fornire un contributo alla ricerca scientifica internazionale e ai metodi attuali di progettazione in merito alla risposta sismica di sistemi in legno a pareti sismo-resistenti, i quali rappresentano tutt’ora un’innovazione nel settore delle costruzioni e si stanno diffondendo grazie alle loro caratteristiche favorevoli. Una panoramica iniziale sull’utilizzo dei principali sistemi strutturali in legno in zone sismiche per la realizzazione di edifici bassi o di media altezza viene fornita e contestualizzata nella vigente normativa sismica europea. La prima parte della tesi affronta il tema della progettazione sismica di sistemi a pareti in legno, con particolare attenzione ai criteri di modellazione lineare e non lineare, proponendo diverse strategie ed evidenziandone le caratteristiche. In questa parte vengono forniti inoltre definizioni e concetti fondamentali propri dell’analisi sismica di strutture in legno. Un’attenzione particolare è riservata alla definizione e applicazione del “capacity design”, sottolineandone lo stretto legame con il concetto di fattore di struttura. Viene proposta infine una definizione del fattore di struttura come prodotto tra una parte intrinseca alla struttura e una sovraresistenza di progetto. Tale definizione permette di caratterizzare i sistemi strutturali con la propria capacità dissipativa e di valutare separatamente la riserva di sicurezza introdotta dalla progettazione. La seconda parte della tesi analizza il comportamento strutturale della tecnologia X-Lam (CLT), che rappresenta uno dei più comuni sistemi strutturali in legno. In questa parte vengono approfonditi i concetti di duttilità, capacità dissipativa, regolarità e irregolarità applicati al sistema X-Lam. La risposta sismica e la capacità dissipativa di questo sistema sono state preliminarmente valutate tramite una procedura analitico-sperimentale. Modelli numerici non-lineari hanno quindi permesso di valutarne la capacità dissipativa intrinseca in funzione delle variabili costruttive proprie del sistema. I risultati mostrano come le decisioni costruttive in fase di progettazione influenzino la risposta sismica dell’edificio; ciò è in contrasto all’applicazione di un unico valore del fattore di struttura per l’intera tecnologia X-Lam. Un’analisi statistica applicata a tali risultati numerici ha consentito di proporre formulazioni analitiche per il fattore di struttura per edifici regolari in funzione delle caratteristiche dell’edificio stesso. Infine, le stesse analisi condotte su edifici non regolari in altezza hanno fornito un coefficiente per tenere in conto della riduzione di capacità dissipativa a causa dell’irregolarità. Nella terza parte viene presentata un’applicazione della tecnologia X-Lam per costruire edifici alti, analizzando il comportamento di edifici snelli con nucleo sismo-resistente e pareti aggiuntive perimetrali. Vengono riportati inoltre le principali limitazioni e inconvenienti nel realizzare tali strutture in aree caratterizzate da elevata intensità sismica e le loro implicazioni nella progettazione. La parte finale descrive e analizza tre sistemi strutturali in legno innovativi, come alternative a tecnologie più comuni, quali X-Lam o platform-frame. Questi sistemi, soggetti ad azioni sismiche, sono caratterizzati da una capacità deformativa e dissipativa diffusa, al contrario del sistema X-Lam in cui tale capacità è concentrata principalmente negli elementi di connessione. Questa risposta differente è studiata attraverso test sperimentali quasi statici e simulazioni numeriche. In dettaglio, sono presentati e analizzati due sistemi a pareti massicce stratificate; realizzate senza l’uso di colla tra gli strati e una parete ibrida acciaio-legno con un sistema innovativo di controvento.
26-gen-2016
This Ph.D. dissertation is the result of a three-year research activity focused on structural and seismic engineering applied to innovative timber constructive systems. The main purpose is to give a contribution to international scientific research and current design practice about the seismic behaviour of timber shear-wall systems, which still represent an innovation in the construction industry and are being developed due to their favourable characteristics. An initial overview on the use of main timber structural systems in seismic-prone areas for low- and medium-rise buildings is provided, within the context of current European seismic code. The theme of the seismic design of timber shear-wall systems is discussed in the first part, giving close attention to linear and non-linear modelling criteria: various strategies are proposed and main characteristics are highlighted. Basic definitions and concepts proper of the seismic analysis of timber structures are provided. A particular attention is paid to the definition and application of the capacity design approach and the close link with the concept of behaviour factor is emphasized. Finally, the definition of behaviour factor, as product between an “intrinsic” capacity of the structure and a design over-strength value is proposed. This definition allows to characterize the structural systems with their proper dissipative capacity and to evaluate separately the safety reserve introduced by design. The second part analyses the structural behaviour of the cross-laminated timber (CLT) technology, which represents one of the most common timber structural systems. The concepts of ductility, dissipative capacity, regularity and irregularity applied to CLT system are provided. The seismic response and the dissipative capacity of this system are firstly evaluated via an experimentally based procedure. Then, the evaluation of its intrinsic dissipative capacity is determined via non-linear numerical modelling with the aim of studying the correlation with the construction variables. Results show that the construction design decisions affect the seismic response and dissipative capacity of buildings, as opposed to apply a single behaviour factor value to the whole CLT technology. A statistical analysis applied to numerical results allowed also to propose analytical formulations for the computation of the suitable behaviour factor value for regular buildings. Then, the same analyses carried out on in-elevation non-regular buildings returned a correction factor to account for the reduction in dissipative capacity due to irregularity. The application of the CLT technology to realize high-rise buildings is presented in the third part, analysing the behaviour of slender buildings with seismic resisting core and perimeter shear walls. The major limitations and drawbacks in realizing these structures in areas characterized by high seismic intensity and their implication in the design are reported. The final part presents three novel structural systems as alternative to more common technologies, as CLT or platform frame. These innovative systems are characterized mainly by a diffuse dissipative and deformation capacity when subjected to seismic loads, while in CLT system such capacity is concentrated in connection elements. This different response is studied via quasi-static tests and numerical simulations. In detail, two non-glued massive timber shear walls and a mixed steel-timber wall with an innovative bracing system are presented.
strutture in legno; ingegneria strutturale; ingegneria sismica; progettazione sismica; X-Lam; sistema a telaio leggero; fattore di struttura; modellazione numerica; test sperimentali; sistemi innovativi; strutture ibride; comportamento isteretico; edifici alti / timber structures; structural engineering; seismic engineering; seismic design; cross-laminated timber; light-frame system; behaviour factor; numerical modelling; experimental tests; innovative systems; hybrid structures; hysteresis behaviour; tall buildings
Insight into seismic behaviour of timber shear-wall systems / Trutalli, Davide. - (2016 Jan 26).
File in questo prodotto:
File Dimensione Formato  
trutalli_davide_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Accesso gratuito
Dimensione 16.24 MB
Formato Adobe PDF
16.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3424481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact