A very important role is played by metal oxides in many areas of chemistry, physics, and materials science. Transition metal and rare-earth metal elements are able to form a large diversity of oxide compounds which can adopt an ample array of atomic structures and electronic properties that can exhibit metallic, semiconductor, or insulator characteristics. In technological applications, metal oxides are used in the fabrication of microelectronic components, sensors, fuel cells, coatings to protect surfaces against corrosion, and as catalysts. In this thesis we have decided to study two known catalytic materials Zirconia-Titania and Ceria-Titania mixed oxides. For both materials bibliography principally concerns powders thus in order to better study their interfaces, of which a deeper study is still lacking, we decided to deposit zirconia and ceria as thin films onto rutile TiO2(110). We first studied the zirconia-titania system by depositing an ultra-thin film of zirconium oxide via a metal-organic precursor: Zirconium Tetra tert-Butoxide. The deposition was carried at three different substrate temperatures 677 K, 738 K, 773 K in five stages of a minute each and the results were traced by using XPS. The chemical characterization via XPS showed an interesting chemistry undergoing on the substrate’s surface and we have observed the formation of carbonaceous species at the interface. Zirconium appeared to be at its highest oxidation state while titanium was seen to undergo reduction with each successive deposited layer. The ratio of the Zr/Ti signals showed that zirconia didn’t completely wet the surface. Furthermore, no long range order was observed via LEED. XPD measurements showed that zirconia does not form a substitutional oxide with titania. However with the aid of computer simulation we deduced that very likely zirconia forms nanochains on the surface of TiO2(110). This surface was exposed to 100 L of pyridine to test its acidity. In the case of ceria, we have deposited the oxide on a heated TiO2(110) substrate via metal evaporation from a Mo crucible since the process is rather easy and garners clean deposits. During deposition the substrate was kept at 677 K and in an O2 environment of 5.2•10-6mbar, and, in order to obtain an ordered homogeneous surface the sample was further annealed in the same environment at 900 K. Through LEED imaging different phases were observed and were dependent on sample history and film thickness. Via computer simulation these phases were then referred to the parent oxide in order to better comprehend the difference in respect to the bulk phase. All films showed cerium present at Ce(III). Ultra-violet Photoelectron Spectroscopy showed the electronic properties of the film showing a binding energy shift and the population of Ce4f states due to stabilization of Ce(III) by TiO2(110). The reactivity of the ceria-titania system was the probed by using methanol and ethanol. Results showed that the addition of ceria opened the dehydrogenation path from alcohol to aldehyde. We have observed that oxygen pre-oxidation of the CeOx-TiO2(110) system had an impact on its selectivity by opening also a dehydration path from methanol and ethanol to respectively, methane and ethylene. This alternative path was viable only for low cerium oxide coverages as interaction with the substrate was needed for dehydration to occur. Aldehyde formation was seen to occur at mild temperatures (330 K) and was independent of film thickness. Subsequently, ceria-titania mixed oxide powders were characterized via XPS and we have observed that for increasing amount of cerium the element gradually became present at its highest oxidation state Ce(IV). By XPS we have also determined the formation of a very intimate composite between the two oxides by observing the increasing the full width at half maximum of the Ti2p peak for increasing amounts of cerium. Furthermore, compositional calculation showed that cerium had the tendency to disperse within the titania particles. These data helped to uncover a possibly good recipe for the formation of cerium titanate a composite with good oxygen storage capacity.

Un ruolo molto importante è svolto dagli ossidi metallici in molti settori della chimica, fisica e scienza dei materiali. I metalli di transizione e le terre rare sono in grado di formare una grande diversità di composti ossidici che possono adottare un'ampia gamma di strutture atomiche ed proprieta’ elettroniche che possono esibire caratteristiche metalliche, semiconduttrici o isolanti. In applicazioni tecnologiche, gli ossidi metallici sono impiegati nella fabbricazione di componenti microelettronici, sensori, celle a combustibile, rivestimenti per proteggere le superfici dalla corrosione, e come catalizzatori. In questa tesi abbiamo deciso di studiare due noti materiali catalitici: gli ossidi misti di Zirconia-Titania Ceria-Titania. Per entrambi i materiali la bibliografia riguarda principalmente le polveri quindi, al fine di studiare meglio le loro interfacce, di cui uno studio più approfondito e’ tuttora neccessario, abbiamo deciso di depositare film sottili di ossido di zirconio e ossido di cerio su rutilo TiO2(110). Abbiamo prima studiato il sistema zirconia-titania depositando un film ultra-sottile di ossido di zirconio mediante un precursore metallo-organico: Zirconio Tetra tert-butossido. La deposizione è stata effettuata a tre diverse temperature del substrato 677. K, 738 K, 773 K in cinque fasi di un minuto ciascuno. La caratterizzazione mediante XPS ha mostrato una chimica interessante sulla superficie del substrato e abbiamo osservato la formazione di specie carboniose all'interfaccia. Lo zirconio sembrava essere nel suo piu’ alto stato di ossidazione mentre il titanio è stato visto gradualmente ridursi con ogni successive strato di deposito. Il rapporto dei segnali Zr/Ti ha mostrato che la zirconia non ha completamente coperto la superficie. Inoltre,tramite LEED non si e’ osservato nessun ordine a lungo raggio. Misure XPD ha mostrato che la zirconia non forma un ossido di sostituzione con la titania. Tuttavia, con l'ausilio di simulazione al computer abbiamo dedotto che la zirconia forma, molto probabilmente nanocatene sulla superficie di TiO2(110). Questa superficie è stato esposta a 100 L di pyridinina per testarne la acidita’. Nel caso di ceria, abbiamo depositato l'ossido su un substrato riscaldato di TiO2 (110) tramite evaporazione del metallo da un crogiolo Mo poiché il processo è piuttosto facile e fornisce depositi puliti. Durante la deposizione il substrato è stata mantenuto a 677 K in un ambiente di 5,2 • 10 -6 mbar di O2, e, al fine di ottenere una superficie omogenea e ordinata il campione è stato ulteriormente sottoposto a trattamento termico nello stesso ambiente a 900 K. Tramite la tecnica LEED sono state osservate differenti fasi dipendenti dalla storia del campione e dallo spessore del film. Tramite simulazione al computer queste fasi sono stati poi riferite rispetto al biossido di cerio per meglio comprendere le differenze rispetto alla fase massiva. Tutti i film hanno mostrato cerio presenti come Ce(III). La Spettroscopia Fotoelettronica a Ultravioletti ha mostrato le proprietà elettroniche del film che mostra uno spostamento in energia di legame e un popolamento degli stati Ce4f. Questo e’ dovuto alla stabilizzazione di Ce (III) da parte di TiO2 (110). Si e’ volute osservare la reattività del sistema ceria-titania nei confronti di metanolo ed etanolo. I risultati hanno mostrato che l'aggiunta di ceria ha aperto il percorso della deidrogenazione degli alcoli ad aldeidi. Abbiamo osservato che la pre-ossidazione con ossigeno del sistema CeOx-TiO2(110) ha avuto un impatto sulla sua selettività aprendo anche un percorso di disidratazione di metanolo ed etanolo rispettivamente a metano ed etilene. Questa via alternativa era valida solo per basse coperture di ossido di cerio avendo osservato che l’interazione con il substrato è stato necessario perche’ avvenga la disidratazione. La formazione di aldeidi fu osservata avvenire a temperature piuttosto (330 K) ed essere indipendente dallo spessore del film. Successivamente sono state caratterizzate tramite XPS delle polveri di ossidi misti di ceria e titania. Abbiamo osservato che per quantità crescenti di cerio l'elemento diventa gradualmente sempre piu’ presente al suo stato di ossidazione più alto Ce (IV). Con XPS abbiamo anche determinato la formazione di un composito molto intimo tra i due ossidi osservando l'aumento della larghezza a metà altezza del picco Ti2p per quantità crescenti di cerio. Inoltre, la determinazione della composizione ha mostrato che il cerio ha la tendenza di disperdersi all'interno delle particelle di titania. Questi dati hanno contribuito a scoprire una possibile buona ricetta per la formazione di cerio titanato; un composito con buona capacità di stoccaggio di ossigeno.

STUDY OF THE STRUCTURE AND THE ELECTRONIC PROPERTIES OF THE OXIDE/OXIDE INTERFACES IN MIXED METAL OXIDES / Reeder, Askia Enrico. - (2014 Jan 30).

STUDY OF THE STRUCTURE AND THE ELECTRONIC PROPERTIES OF THE OXIDE/OXIDE INTERFACES IN MIXED METAL OXIDES

Reeder, Askia Enrico
2014

Abstract

Un ruolo molto importante è svolto dagli ossidi metallici in molti settori della chimica, fisica e scienza dei materiali. I metalli di transizione e le terre rare sono in grado di formare una grande diversità di composti ossidici che possono adottare un'ampia gamma di strutture atomiche ed proprieta’ elettroniche che possono esibire caratteristiche metalliche, semiconduttrici o isolanti. In applicazioni tecnologiche, gli ossidi metallici sono impiegati nella fabbricazione di componenti microelettronici, sensori, celle a combustibile, rivestimenti per proteggere le superfici dalla corrosione, e come catalizzatori. In questa tesi abbiamo deciso di studiare due noti materiali catalitici: gli ossidi misti di Zirconia-Titania Ceria-Titania. Per entrambi i materiali la bibliografia riguarda principalmente le polveri quindi, al fine di studiare meglio le loro interfacce, di cui uno studio più approfondito e’ tuttora neccessario, abbiamo deciso di depositare film sottili di ossido di zirconio e ossido di cerio su rutilo TiO2(110). Abbiamo prima studiato il sistema zirconia-titania depositando un film ultra-sottile di ossido di zirconio mediante un precursore metallo-organico: Zirconio Tetra tert-butossido. La deposizione è stata effettuata a tre diverse temperature del substrato 677. K, 738 K, 773 K in cinque fasi di un minuto ciascuno. La caratterizzazione mediante XPS ha mostrato una chimica interessante sulla superficie del substrato e abbiamo osservato la formazione di specie carboniose all'interfaccia. Lo zirconio sembrava essere nel suo piu’ alto stato di ossidazione mentre il titanio è stato visto gradualmente ridursi con ogni successive strato di deposito. Il rapporto dei segnali Zr/Ti ha mostrato che la zirconia non ha completamente coperto la superficie. Inoltre,tramite LEED non si e’ osservato nessun ordine a lungo raggio. Misure XPD ha mostrato che la zirconia non forma un ossido di sostituzione con la titania. Tuttavia, con l'ausilio di simulazione al computer abbiamo dedotto che la zirconia forma, molto probabilmente nanocatene sulla superficie di TiO2(110). Questa superficie è stato esposta a 100 L di pyridinina per testarne la acidita’. Nel caso di ceria, abbiamo depositato l'ossido su un substrato riscaldato di TiO2 (110) tramite evaporazione del metallo da un crogiolo Mo poiché il processo è piuttosto facile e fornisce depositi puliti. Durante la deposizione il substrato è stata mantenuto a 677 K in un ambiente di 5,2 • 10 -6 mbar di O2, e, al fine di ottenere una superficie omogenea e ordinata il campione è stato ulteriormente sottoposto a trattamento termico nello stesso ambiente a 900 K. Tramite la tecnica LEED sono state osservate differenti fasi dipendenti dalla storia del campione e dallo spessore del film. Tramite simulazione al computer queste fasi sono stati poi riferite rispetto al biossido di cerio per meglio comprendere le differenze rispetto alla fase massiva. Tutti i film hanno mostrato cerio presenti come Ce(III). La Spettroscopia Fotoelettronica a Ultravioletti ha mostrato le proprietà elettroniche del film che mostra uno spostamento in energia di legame e un popolamento degli stati Ce4f. Questo e’ dovuto alla stabilizzazione di Ce (III) da parte di TiO2 (110). Si e’ volute osservare la reattività del sistema ceria-titania nei confronti di metanolo ed etanolo. I risultati hanno mostrato che l'aggiunta di ceria ha aperto il percorso della deidrogenazione degli alcoli ad aldeidi. Abbiamo osservato che la pre-ossidazione con ossigeno del sistema CeOx-TiO2(110) ha avuto un impatto sulla sua selettività aprendo anche un percorso di disidratazione di metanolo ed etanolo rispettivamente a metano ed etilene. Questa via alternativa era valida solo per basse coperture di ossido di cerio avendo osservato che l’interazione con il substrato è stato necessario perche’ avvenga la disidratazione. La formazione di aldeidi fu osservata avvenire a temperature piuttosto (330 K) ed essere indipendente dallo spessore del film. Successivamente sono state caratterizzate tramite XPS delle polveri di ossidi misti di ceria e titania. Abbiamo osservato che per quantità crescenti di cerio l'elemento diventa gradualmente sempre piu’ presente al suo stato di ossidazione più alto Ce (IV). Con XPS abbiamo anche determinato la formazione di un composito molto intimo tra i due ossidi osservando l'aumento della larghezza a metà altezza del picco Ti2p per quantità crescenti di cerio. Inoltre, la determinazione della composizione ha mostrato che il cerio ha la tendenza di disperdersi all'interno delle particelle di titania. Questi dati hanno contribuito a scoprire una possibile buona ricetta per la formazione di cerio titanato; un composito con buona capacità di stoccaggio di ossigeno.
30-gen-2014
A very important role is played by metal oxides in many areas of chemistry, physics, and materials science. Transition metal and rare-earth metal elements are able to form a large diversity of oxide compounds which can adopt an ample array of atomic structures and electronic properties that can exhibit metallic, semiconductor, or insulator characteristics. In technological applications, metal oxides are used in the fabrication of microelectronic components, sensors, fuel cells, coatings to protect surfaces against corrosion, and as catalysts. In this thesis we have decided to study two known catalytic materials Zirconia-Titania and Ceria-Titania mixed oxides. For both materials bibliography principally concerns powders thus in order to better study their interfaces, of which a deeper study is still lacking, we decided to deposit zirconia and ceria as thin films onto rutile TiO2(110). We first studied the zirconia-titania system by depositing an ultra-thin film of zirconium oxide via a metal-organic precursor: Zirconium Tetra tert-Butoxide. The deposition was carried at three different substrate temperatures 677 K, 738 K, 773 K in five stages of a minute each and the results were traced by using XPS. The chemical characterization via XPS showed an interesting chemistry undergoing on the substrate’s surface and we have observed the formation of carbonaceous species at the interface. Zirconium appeared to be at its highest oxidation state while titanium was seen to undergo reduction with each successive deposited layer. The ratio of the Zr/Ti signals showed that zirconia didn’t completely wet the surface. Furthermore, no long range order was observed via LEED. XPD measurements showed that zirconia does not form a substitutional oxide with titania. However with the aid of computer simulation we deduced that very likely zirconia forms nanochains on the surface of TiO2(110). This surface was exposed to 100 L of pyridine to test its acidity. In the case of ceria, we have deposited the oxide on a heated TiO2(110) substrate via metal evaporation from a Mo crucible since the process is rather easy and garners clean deposits. During deposition the substrate was kept at 677 K and in an O2 environment of 5.2•10-6mbar, and, in order to obtain an ordered homogeneous surface the sample was further annealed in the same environment at 900 K. Through LEED imaging different phases were observed and were dependent on sample history and film thickness. Via computer simulation these phases were then referred to the parent oxide in order to better comprehend the difference in respect to the bulk phase. All films showed cerium present at Ce(III). Ultra-violet Photoelectron Spectroscopy showed the electronic properties of the film showing a binding energy shift and the population of Ce4f states due to stabilization of Ce(III) by TiO2(110). The reactivity of the ceria-titania system was the probed by using methanol and ethanol. Results showed that the addition of ceria opened the dehydrogenation path from alcohol to aldehyde. We have observed that oxygen pre-oxidation of the CeOx-TiO2(110) system had an impact on its selectivity by opening also a dehydration path from methanol and ethanol to respectively, methane and ethylene. This alternative path was viable only for low cerium oxide coverages as interaction with the substrate was needed for dehydration to occur. Aldehyde formation was seen to occur at mild temperatures (330 K) and was independent of film thickness. Subsequently, ceria-titania mixed oxide powders were characterized via XPS and we have observed that for increasing amount of cerium the element gradually became present at its highest oxidation state Ce(IV). By XPS we have also determined the formation of a very intimate composite between the two oxides by observing the increasing the full width at half maximum of the Ti2p peak for increasing amounts of cerium. Furthermore, compositional calculation showed that cerium had the tendency to disperse within the titania particles. These data helped to uncover a possibly good recipe for the formation of cerium titanate a composite with good oxygen storage capacity.
STRUCTURE ELECTRONIC PROPERTIES OXIDE INTERFACES MIXED METAL METHANOL ETHANOL TPD PHASES CERIA ZIRCONIA TITANIA
STUDY OF THE STRUCTURE AND THE ELECTRONIC PROPERTIES OF THE OXIDE/OXIDE INTERFACES IN MIXED METAL OXIDES / Reeder, Askia Enrico. - (2014 Jan 30).
File in questo prodotto:
File Dimensione Formato  
Reeder_Askia_Enrico_Tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Accesso libero
Dimensione 11.54 MB
Formato Adobe PDF
11.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact