The research presented in this thesis involves different aspects related to advanced control methodologies and self-commissioning identification algorithms in modern electrical drives. The theoretical study and the validation of the results obtained were performed in the three years of Ph.D. at the Electric Drives Laboratory in the Department of Management and Engineering of the University of Padova, (VI) Italy. The research topics were mainly three, all related to the implementation and development of advanced controls for electric drives, aimed at a more efficient use of the electric machines in the modern mechatronic applications. The demand of electric drives capable of guarantee high-performance and flexible enough to update in real time the parameters involved in the control algorithm are the motivation of the present research, as well as the meshing or replacement of standard or obsolete control techniques with modern ones, able to fully exploit the new hardware resources. In order to contextualizes and motivate the choice of the present research in the world scenario, a comprehensive bibliographic framework can be found in the introduction of each chapter of the thesis. The part one of the thesis presents two new control architectures for Permanent Magnet Synchronous Motors, that is a type of electric machine notoriously appreciated by both academia and industry for its flexibility of use and controllability. To this aim, in Chap.2 is proposed a non-linear control algorithm for the automatic search of the Maximum Torque Per Ampere (MTPA) operating condition for Permanent Magnet Synchronous Motors with anisotropic structure, to be integrated in a conventional Field Oriented Control scheme. The exhaustive convergence and stability analysis performed in order to derive a new and original tuning method of the controller (proven by numerous experimental evidences) is definitely one of the distinguishing features in this research topic. In parallel to the first topic, for the same type of motor has been investigated and developed (first analytically and then by simulation) a speed and current Direct Predictive Control with Hierarchical decisional structure. Unlike the traditional control techniques, the proposed Direct Predictive Control with modified hierarchical control structure has a faster dynamic and the capability to impose different operating conditions aimed at the energy efficiency optimisation. The on-line execution of the algorithm required for the experimental validation, has become possible thanks to the adoption of a control platform based on FPGA logic (Chap.3). In fact, the processing speed provided by these devices, released from the execution of sequential instructions (typical of the architecture of the microprocessors), ensures an execution time of the algorithm contained in a few us. The part two of the thesis (i. e. Chap.5) presents an innovative technique of parameter identification for induction motors, capable of estimating the parameters of the equivalent inverse-Gamma electric circuit completely at standstill. As known, the saturations in the parameters of the magnetic circuit of the induction motor and the relative nonlinearities, deteriorate the performance of the standard sensored or sensorless vectorial controls. The studied self-commissioning procedure addresses and solves many problems related to the estimate of the non-linearity of the parameters, and then it can be considered as an evolution of the classical identification techniques in the literature. The practical feasibility, doubly validated by numerous experimental tests and by many finite element simulations on three different induction motors, concludes the chapter and proves definitely the method.
La ricerca presentata in questa tesi coinvolge molteplici aspetti che si legano alle più recenti metodologie di controllo studiate per azionamenti elettrici di ultima generazione. Lo studio teorico e la validazione in ambito sperimentale sono il frutto del lavoro svolto nel triennio di dottorato presso il laboratorio di azionamenti elettrici del Dipartimento di Tecnica e Gestione dei Sistemi Industriali dell’Università degli Studi di Padova. I temi di ricerca trattati sono principalmente tre, tutti legati alla realizzazione e allo sviluppo di algoritmi di controllo innovativi, capaci di incrementare l’efficienza e le prestazioni delle macchine elettriche di ultima generazione per applicazioni meccatroniche. Azionamenti elettrici in grado di garantire elevate prestazioni ma sufficientemente flessibili da aggiornare in tempo reale i diversi parametri coinvolti nel algoritmo di controllo sono il filo conduttore e la motivazione della presente ricerca, così come la sostituzione di logiche di controllo standard o obsolete con nuove architetture di controllo capaci di sfruttare le più recenti innovazioni hardware. Al fine di contestualizzare e motivare la ricerca condotta nel panorama mondiale, nell’introduzione di ciascun capitolo è inserito un esaustivo inquadramento bibliograficoinerente inerente il problema affrontato. La prima parte della tesi presenta due nuove architetture di controllo per motori sincroni a magnete permanente, tipologia di macchina elettrica notoriamente apprezzata dal mondo accademico e industriale sia per la sua flessibilità d’uso che per la sua facile controllabilità. In tal senso, nel Capitolo2 è descritto e formalizzato un controllo non lineare per motori sincroni a magnete permanente anisotropi, inseribile in schemi di controllo convenzionali ad orientamento di campo per ottenere la condizione di funzionamento a massima coppia su corrente (MTPA). L’esaustiva analisi di convergenza e stabilità condotta al fine di ottenere un nuovo ed originale metodo per la sintonizzazione del regolatore (comprovato da numerose evidenze sperimentali) è sicuramente una delle caratteristiche distintive per questo ramo della ricerca. Per la stessa tipologia di motore è stato poi sviluppato un controllo predittivo a stati finiti con struttura decisionale gerarchica. A differenza delle tecniche di controllo tradizionali, la soluzione studiata garantisce una dinamica veloce e la possibilità di imporre condizioni operative diverse, volte all’ottimizzazione e all’incremento dell’efficienza energetica. L’esecuzione on-line di tale algoritmo per le verifiche sperimentali si è resa fattibile grazie all’adozione di una piattaforma di controllo basata su logica FPGA (Capitolo3), in quanto la velocità di calcolo offerta da tali dispositivi, svincolata dall’esecuzione sequenziale delle istruzioni tipica dei microprocessori, garantisce tempi di esecuzione dell’algoritmo contenuti a pochi us. Nella seconda parte della tesi (Capitolo5) è presentata un innovativa tecnica di identificazione parametrica per motori asincroni, capace di stimare i parametri del circuito equivalente a Gamma-inverso del motore asincrono, a rotore fermo. Come noto, le saturazioni del circuito magnetico della macchina e le non linearità ad esso associate deteriorano le performances nei normali controlli vettoriali sensored e soprattutto sensorless. Il metodo di identificazione parametrica studiato affronta e risolve molti problemi connessi alla stima delle non linearità dei parametri, configurandosi a tutti gli effetti come un evoluzione delle classiche tecniche di identificazione presenti in letteratura. La fattibilità pratica del metodo, validata con innumerevoli prove sperimentali e simulazioni agli elementi finiti su tre diversi motori ad induzione, conclude il capitolo e prova in modo definitivo la realizzabilità del metodo.
Innovative estimation and control techniques in electric drives for mechatronic applications / Carraro, Matteo. - (2014 Jan).
Innovative estimation and control techniques in electric drives for mechatronic applications
Carraro, Matteo
2014
Abstract
La ricerca presentata in questa tesi coinvolge molteplici aspetti che si legano alle più recenti metodologie di controllo studiate per azionamenti elettrici di ultima generazione. Lo studio teorico e la validazione in ambito sperimentale sono il frutto del lavoro svolto nel triennio di dottorato presso il laboratorio di azionamenti elettrici del Dipartimento di Tecnica e Gestione dei Sistemi Industriali dell’Università degli Studi di Padova. I temi di ricerca trattati sono principalmente tre, tutti legati alla realizzazione e allo sviluppo di algoritmi di controllo innovativi, capaci di incrementare l’efficienza e le prestazioni delle macchine elettriche di ultima generazione per applicazioni meccatroniche. Azionamenti elettrici in grado di garantire elevate prestazioni ma sufficientemente flessibili da aggiornare in tempo reale i diversi parametri coinvolti nel algoritmo di controllo sono il filo conduttore e la motivazione della presente ricerca, così come la sostituzione di logiche di controllo standard o obsolete con nuove architetture di controllo capaci di sfruttare le più recenti innovazioni hardware. Al fine di contestualizzare e motivare la ricerca condotta nel panorama mondiale, nell’introduzione di ciascun capitolo è inserito un esaustivo inquadramento bibliograficoinerente inerente il problema affrontato. La prima parte della tesi presenta due nuove architetture di controllo per motori sincroni a magnete permanente, tipologia di macchina elettrica notoriamente apprezzata dal mondo accademico e industriale sia per la sua flessibilità d’uso che per la sua facile controllabilità. In tal senso, nel Capitolo2 è descritto e formalizzato un controllo non lineare per motori sincroni a magnete permanente anisotropi, inseribile in schemi di controllo convenzionali ad orientamento di campo per ottenere la condizione di funzionamento a massima coppia su corrente (MTPA). L’esaustiva analisi di convergenza e stabilità condotta al fine di ottenere un nuovo ed originale metodo per la sintonizzazione del regolatore (comprovato da numerose evidenze sperimentali) è sicuramente una delle caratteristiche distintive per questo ramo della ricerca. Per la stessa tipologia di motore è stato poi sviluppato un controllo predittivo a stati finiti con struttura decisionale gerarchica. A differenza delle tecniche di controllo tradizionali, la soluzione studiata garantisce una dinamica veloce e la possibilità di imporre condizioni operative diverse, volte all’ottimizzazione e all’incremento dell’efficienza energetica. L’esecuzione on-line di tale algoritmo per le verifiche sperimentali si è resa fattibile grazie all’adozione di una piattaforma di controllo basata su logica FPGA (Capitolo3), in quanto la velocità di calcolo offerta da tali dispositivi, svincolata dall’esecuzione sequenziale delle istruzioni tipica dei microprocessori, garantisce tempi di esecuzione dell’algoritmo contenuti a pochi us. Nella seconda parte della tesi (Capitolo5) è presentata un innovativa tecnica di identificazione parametrica per motori asincroni, capace di stimare i parametri del circuito equivalente a Gamma-inverso del motore asincrono, a rotore fermo. Come noto, le saturazioni del circuito magnetico della macchina e le non linearità ad esso associate deteriorano le performances nei normali controlli vettoriali sensored e soprattutto sensorless. Il metodo di identificazione parametrica studiato affronta e risolve molti problemi connessi alla stima delle non linearità dei parametri, configurandosi a tutti gli effetti come un evoluzione delle classiche tecniche di identificazione presenti in letteratura. La fattibilità pratica del metodo, validata con innumerevoli prove sperimentali e simulazioni agli elementi finiti su tre diversi motori ad induzione, conclude il capitolo e prova in modo definitivo la realizzabilità del metodo.File | Dimensione | Formato | |
---|---|---|---|
Carraro_Matteo_Tesi.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
10.59 MB
Formato
Adobe PDF
|
10.59 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.