I transistor a film sottile organici e inorganici (O-TFT e I-TFT) sono stati ampiamente studiati, per via delle loro peculiarità, quali: processi di fabbricazione a basso costo, flessibilità, leggerezza e semitrasparenza. Pertanto, abbiamo presentato e discusso una nuova tecnica per l'estrazione dei parametri nei transistor a film sottile. Convalidandola sperimentalmente per via di una caratterizzazione completa di transistor sia organici che inorganici avendo come semiconduttore rispettivamente diossil-quatertiofene e indio-gallio-zinco-ossido (IGZO). Tuttavia, l'affidabilità degli IGZO TFT non è completamente compresa e perciò, abbiamo studiato l'impatto di uno stress elettrico a gradini sul gate stimando cosi la tensione di rottura per i diversi fattori di forma del canale. I nostri risultati mostrano che la tensione di rottura ha una parziale dipendenza dalla larghezza del canale, mentre presenta soltanto una dipendenza marginale o nulla dalla sua lunghezza. Al fine di garantire l'accuratezza dei risultati sopra menzionati, il modello utilizzato richiede che il principio di funzionamento dei dispositivi analizzati sia ben noto a priori. Sfortunatamente, nell'elettronica organica e amorfa, questo avviene raramente. In particolare, ci siamo concentrati sugli effetti parassiti non lineari nella regione tra gli elettrodi Source/Drain e il canale del transistor. Infatti, possiamo rappresentare tale regione come una struttura metallo-isolante-metallo (MIM). Abbiamo quindi sviluppato un modello in grado di descrivere la caduta di tensione parassita ai contatti dell'OTFT spiegando al contempo le proprietà dei dispositivi MIM. Inoltre, abbiamo proposto un modello che considera anche gli effetti della rugosità superficiale all'interfaccia metallo/semiconduttore e, mediante simulazioni, ne abbiamo evidenziato gli effetti principali. Tra le tecnologie a film sottile, i ricercatori hanno effettuato sforzi anche nell'area sanitaria, lavorando con diversi polimeri e molecole in cui i semiconduttori organici sono all'interfaccia con una soluzione ionica. Inoltre, il miglioramento dei dispositivi "ad acqua", come i transistor elettrochimici organici e gli OTFT elettrolitici (EGOFET), sta aprendo la strada allo sviluppo di nuovi biosensori. Quindi, abbiamo presentato un modello generale per il sistema metallo/semiconduttore organico/liquido/metallo. Per sottolineare l'importanza del nostro modello, abbiamo riportato due casi di studio tramite la spettroscopia di impedenza elettrochimica, rispettivamente per l'NaCl e MilliQ come mezzo di gate, dimostrando che entrambi i casi possono essere considerati come un caso particolare del modello generale. Tra i diversi materiali organici, il TIPS-Pentacene è stato recentemente impiegato per realizzare degli EGOFET, che sono dispositivi promettenti per i biosensori. Quindi, abbiamo fabbricato degli EGOFET utilizzando il TIPS-pentacene. Nonostante il semiconduttore sia stato depositato in aria per drop casting, i nostri EGOFET hanno mostrato prestazioni paragonabili a quelli realizzati con tecnologie all'avanguardia. Inoltre, abbiamo studiato con successo la biocompatibilità del materiale, promuovendo l'uso degli EGOFET basati sul TIPS -pentacene come biosensori. Tali dispositivi possono essere utilizzati anche come EGOGET senza elettrodo di riferimento (RL-EGOFET) rilevandosi dei nuovi candidati per la stimolazione in vivo e la registrazione dell'attività cellulare. Pertanto, abbiamo studiato tali dispositivi, facendo luce sul meccanismo di auto-polarizzazione e dimostrando che gli EGOFET possono presentare un comportamento ad effetto di campo anche senza la presenza dell'elettrodo di gate. In sintesi, i lavori e i risultati di questa tesi hanno permesso uno studio più approfondito e accurato dei dispositivi a film sottile. Pertanto, riteniamo che i risultati qui rappresentati potrebbero aiutare a migliorare sia i dispositivi attuali sia nello sviluppo di nuovi dispositivi.
Organic and Inorganic Thin-Film Transistors (O-TFTs and I-TFTs, respectively) have been widely studied during the last years, due to appealing properties such as low-cost fabrication processes, flexibility, lightweight and (semi-) transparency. Therefore, to help the study and development of such technologies, we presented and discussed a new simple and easy to use technique for parameter extraction in thin film transistors. We experimentally validate our procedure by performing a complete characterization of both organic and inorganic transistors featuring dihexyl-quaterthiophene and indium-gallium-zinc-oxide (IGZO) as semiconducting materials, respectively. However, the reliability of IGZO TFTs are not fully understood and for this reason, we studied the impact of stair-case gate bias stress on them and we estimated the breakdown voltage for different channel aspect ratios. Our results show that the breakdown voltage exhibits a remarkable dependence on the channel width, while exposing no, or marginal, dependence on the channel length. In order to ensure the accuracy of the above-mentioned results, the used model require that working principle of the analysed devices must be well known at priori. Unfortunately, in organic and amorphous electronic this hardly ever the case. In particular, we focused on the non-linear parasitic effects in the region between the Source/Drain electrodes and the transistor channel. We can represent this region as metal-insulator-metal (MIM) structure. Hence, we propose a model that can describe the parasitic voltage drop at the contacts of the OTFT and at the same time we explained the properties of the MIM devices. Furthermore, we proposed an enhanced model that consider also the effects of the surface roughness on the metal semiconductor interface, and, by means of simulations, we highlighted the macroscopic effect of the surface roughness. Among the thin film transistor technology, researchers have spent many efforts in the healthcare area, working with different polymers and small molecules where organic semiconductors are at the interface with an ionic solution. In addition, the improvement of water gated devices, such as organic electrochemical transistors and electrolyte-gated organic field effect transistors (EGOFETs), is paving the way to the development of new biosensors. Hence, we presented a general equivalent circuit model for the metal/organic semiconductor /liquid/metal system. To underline the importance of our model, we reported two cases of study of electrochemical impedance spectroscopy of devices featuring NaCl and MilliQ water as gate medium, showing that both cases can be considered as a particular case of the general model presented in this thesis. Among the different organic materials, TIPS-Pentacene was recently employed to make EGOFETs, which are promising devices for biosensing applications. For this reason, we fabricated EGOFETs using TIPS-pentacene as active material. Despite the organic semiconductor being deposited in air by drop casting, our EGOFETs showed performance comparable with state-of-the-art technologies. In addition, we successfully investigated, the biocompatibility of the material, promoting the use of TIPS-pentacene-based EGOFETs for biosensing applications. Such devices can be used also as Reference-Less EGOGET (RL-EGOFETs) that are a new candidate for in vivo stimulation and recording of cells activity. Therefore, we characterized the fabricated EGOFETs in Reference-Less configuration, shedding light on the self-polarization mechanism, demonstrating that EGOFETs can feature a field-effect behavior even without the presence of the gate electrode. In summary, the works and the results of this thesis allowed a deeper and accurate study of thin film devices. Hence, we believe that the results here represented could help the in improvement of state of art devices and in the development of new devices.
Study of thin film devices and organic biosensors: parasitic phenomena, modelling and characterization / Buonomo, Marco. - (2019 Dec 01).
Study of thin film devices and organic biosensors: parasitic phenomena, modelling and characterization
Buonomo, Marco
2019
Abstract
Organic and Inorganic Thin-Film Transistors (O-TFTs and I-TFTs, respectively) have been widely studied during the last years, due to appealing properties such as low-cost fabrication processes, flexibility, lightweight and (semi-) transparency. Therefore, to help the study and development of such technologies, we presented and discussed a new simple and easy to use technique for parameter extraction in thin film transistors. We experimentally validate our procedure by performing a complete characterization of both organic and inorganic transistors featuring dihexyl-quaterthiophene and indium-gallium-zinc-oxide (IGZO) as semiconducting materials, respectively. However, the reliability of IGZO TFTs are not fully understood and for this reason, we studied the impact of stair-case gate bias stress on them and we estimated the breakdown voltage for different channel aspect ratios. Our results show that the breakdown voltage exhibits a remarkable dependence on the channel width, while exposing no, or marginal, dependence on the channel length. In order to ensure the accuracy of the above-mentioned results, the used model require that working principle of the analysed devices must be well known at priori. Unfortunately, in organic and amorphous electronic this hardly ever the case. In particular, we focused on the non-linear parasitic effects in the region between the Source/Drain electrodes and the transistor channel. We can represent this region as metal-insulator-metal (MIM) structure. Hence, we propose a model that can describe the parasitic voltage drop at the contacts of the OTFT and at the same time we explained the properties of the MIM devices. Furthermore, we proposed an enhanced model that consider also the effects of the surface roughness on the metal semiconductor interface, and, by means of simulations, we highlighted the macroscopic effect of the surface roughness. Among the thin film transistor technology, researchers have spent many efforts in the healthcare area, working with different polymers and small molecules where organic semiconductors are at the interface with an ionic solution. In addition, the improvement of water gated devices, such as organic electrochemical transistors and electrolyte-gated organic field effect transistors (EGOFETs), is paving the way to the development of new biosensors. Hence, we presented a general equivalent circuit model for the metal/organic semiconductor /liquid/metal system. To underline the importance of our model, we reported two cases of study of electrochemical impedance spectroscopy of devices featuring NaCl and MilliQ water as gate medium, showing that both cases can be considered as a particular case of the general model presented in this thesis. Among the different organic materials, TIPS-Pentacene was recently employed to make EGOFETs, which are promising devices for biosensing applications. For this reason, we fabricated EGOFETs using TIPS-pentacene as active material. Despite the organic semiconductor being deposited in air by drop casting, our EGOFETs showed performance comparable with state-of-the-art technologies. In addition, we successfully investigated, the biocompatibility of the material, promoting the use of TIPS-pentacene-based EGOFETs for biosensing applications. Such devices can be used also as Reference-Less EGOGET (RL-EGOFETs) that are a new candidate for in vivo stimulation and recording of cells activity. Therefore, we characterized the fabricated EGOFETs in Reference-Less configuration, shedding light on the self-polarization mechanism, demonstrating that EGOFETs can feature a field-effect behavior even without the presence of the gate electrode. In summary, the works and the results of this thesis allowed a deeper and accurate study of thin film devices. Hence, we believe that the results here represented could help the in improvement of state of art devices and in the development of new devices.File | Dimensione | Formato | |
---|---|---|---|
Buonomo_Marco_Tesi.pdf
Open Access dal 03/12/2022
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
6.69 MB
Formato
Adobe PDF
|
6.69 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.