In the last decade, the huge decreasing of sequencing cost due to the development of high-throughput technologies completely changed the way for approaching the genetic problems. In particular, whole exome and whole genome sequencing are contributing to the extraordinary progress in the study of human variants opening up new perspectives in personalized medicine. Being a relatively new and fast developing field, appropriate tools and specialized knowledge are required for an efficient data production and analysis. In line with the times, in 2014, the University of Padua funded the BioInfoGen Strategic Project with the goal of developing technology and expertise in bioinformatics and molecular biology applied to personal genomics. The aim of my PhD was to contribute to this challenge by implementing a series of innovative tools and by applying them for investigating and possibly solving the case studies included into the project. I firstly developed an automated pipeline for dealing with Illumina data, able to sequentially perform each step necessary for passing from raw reads to somatic or germline variant detection. The system performance has been tested by means of internal controls and by its application on a cohort of patients affected by gastric cancer, obtaining interesting results. Once variants are called, they have to be annotated in order to define their properties such as the position at transcript and protein level, the impact on protein sequence, the pathogenicity and more. As most of the publicly available annotators were affected by systematic errors causing a low consistency in the final annotation, I implemented VarPred, a new tool for variant annotation, which guarantees the best accuracy (>99%) compared to the state-of-the-art programs, showing also good processing times. To make easy the use of VarPred, I equipped it with an intuitive web interface, that allows not only a graphical result evaluation, but also a simple filtration strategy. Furthermore, for a valuable user-driven prioritization of human genetic variations, I developed QueryOR, a web platform suitable for searching among known candidate genes as well as for finding novel gene-disease associations. QueryOR combines several innovative features that make it comprehensive, flexible and easy to use. The prioritization is achieved by a global positive selection process that promotes the emergence of the most reliable variants, rather than filtering out those not satisfying the applied criteria. QueryOR has been used to analyze the two case studies framed within the BioInfoGen project. In particular, it allowed to detect causative variants in patients affected by lysosomal storage diseases, highlighting also the efficacy of the designed sequencing panel. On the other hand, QueryOR simplified the recognition of LRP2 gene as possible candidate to explain such subjects with a Dent disease-like phenotype, but with no mutation in the previously identified disease-associated genes, CLCN5 and OCRL. As final corollary, an extensive analysis over recurrent exome variants was performed, showing that their origin can be mainly explained by inaccuracies in the reference genome, including misassembled regions and uncorrected bases, rather than by platform specific errors.

Nell’ultimo decennio, l’enorme diminuzione del costo del sequenziamento dovuto allo sviluppo di tecnologie ad alto rendimento ha completamente rivoluzionato il modo di approcciare i problemi genetici. In particolare, il sequenziamento dell’intero esoma e dell’intero genoma stanno contribuendo ad un progresso straordinario nello studio delle varianti genetiche umane, aprendo nuove prospettive nella medicina personalizzata. Essendo un campo relativamente nuovo e in rapido sviluppo, strumenti appropriati e conoscenze specializzate sono richieste per un’efficiente produzione e analisi dei dati. Per rimanere al passo con i tempi, nel 2014, l’Università degli Studi di Padova ha finanziato il progetto strategico BioInfoGen con l’obiettivo di sviluppare tecnologie e competenze nella bioinformatica e nella biologia molecolare applicate alla genomica personalizzata. Lo scopo del mio dottorato è stato quello di contribuire a questa sfida, implementando una serie di strumenti innovativi, al fine di applicarli per investigare e possibilmente risolvere i casi studio inclusi all’interno del progetto. Inizialmente ho sviluppato una pipeline per analizzare i dati Illumina, capace di eseguire in sequenza tutti i processi necessari per passare dai dati grezzi alla scoperta delle varianti sia germinali che somatiche. Le prestazioni del sistema sono state testate mediante controlli interni e tramite la sua applicazione su un gruppo di pazienti affetti da tumore gastrico, ottenendo risultati interessanti. Dopo essere state chiamate, le varianti devono essere annotate al fine di definire alcune loro proprietà come la posizione a livello del trascritto e della proteina, l’impatto sulla sequenza proteica, la patogenicità, ecc. Poiché la maggior parte degli annotatori disponibili presentavano errori sistematici che causavano una bassa coerenza nell’annotazione finale, ho implementato VarPred, un nuovo strumento per l’annotazione delle varianti, che garantisce la migliore accuratezza (>99%) comparato con lo stato dell’arte, mostrando allo stesso tempo buoni tempi di esecuzione. Per facilitare l’utilizzo di VarPred, ho sviluppato un’interfaccia web molto intuitiva, che permette non solo la visualizzazione grafica dei risultati, ma anche una semplice strategia di filtraggio. Inoltre, per un’efficace prioritizzazione mediata dall’utente delle varianti umane, ho sviluppato QueryOR, una piattaforma web adatta alla ricerca all’interno dei geni causativi, ma utile anche per trovare nuove associazioni gene-malattia. QueryOR combina svariate caratteristiche innovative che lo rendono comprensivo, flessibile e facile da usare. La prioritizzazione è raggiunta tramite un processo di selezione positiva che fa emergere le varianti maggiormente significative, piuttosto che filtrare quelle che non soddisfano i criteri imposti. QueryOR è stato usato per analizzare i due casi studio inclusi all’interno del progetto BioInfoGen. In particolare, ha permesso di scoprire le varianti causative dei pazienti affetti da malattie da accumulo lisosomiale, evidenziando inoltre l’efficacia del pannello di sequenziamento sviluppato. Dall’altro lato invece QueryOR ha semplificato l’individuazione del gene LRP2 come possibile candidato per spiegare i soggetti con un fenotipo simile alla malattia di Dent, ma senza alcuna mutazione nei due geni precedentemente descritti come causativi, CLCN5 e OCRL. Come corollario finale, è stata effettuata un’analisi estensiva su varianti esomiche ricorrenti, mostrando come la loro origine possa essere principalmente spiegata da imprecisioni nel genoma di riferimento, tra cui regioni mal assemblate e basi non corrette, piuttosto che da errori piattaforma-specifici.

Bioinformatics for personal genomics: development and application of bioinformatic procedures for the analysis of genomic data / Bertoldi, Loris. - (2018 Jan 15).

Bioinformatics for personal genomics: development and application of bioinformatic procedures for the analysis of genomic data

Bertoldi, Loris
2018

Abstract

Nell’ultimo decennio, l’enorme diminuzione del costo del sequenziamento dovuto allo sviluppo di tecnologie ad alto rendimento ha completamente rivoluzionato il modo di approcciare i problemi genetici. In particolare, il sequenziamento dell’intero esoma e dell’intero genoma stanno contribuendo ad un progresso straordinario nello studio delle varianti genetiche umane, aprendo nuove prospettive nella medicina personalizzata. Essendo un campo relativamente nuovo e in rapido sviluppo, strumenti appropriati e conoscenze specializzate sono richieste per un’efficiente produzione e analisi dei dati. Per rimanere al passo con i tempi, nel 2014, l’Università degli Studi di Padova ha finanziato il progetto strategico BioInfoGen con l’obiettivo di sviluppare tecnologie e competenze nella bioinformatica e nella biologia molecolare applicate alla genomica personalizzata. Lo scopo del mio dottorato è stato quello di contribuire a questa sfida, implementando una serie di strumenti innovativi, al fine di applicarli per investigare e possibilmente risolvere i casi studio inclusi all’interno del progetto. Inizialmente ho sviluppato una pipeline per analizzare i dati Illumina, capace di eseguire in sequenza tutti i processi necessari per passare dai dati grezzi alla scoperta delle varianti sia germinali che somatiche. Le prestazioni del sistema sono state testate mediante controlli interni e tramite la sua applicazione su un gruppo di pazienti affetti da tumore gastrico, ottenendo risultati interessanti. Dopo essere state chiamate, le varianti devono essere annotate al fine di definire alcune loro proprietà come la posizione a livello del trascritto e della proteina, l’impatto sulla sequenza proteica, la patogenicità, ecc. Poiché la maggior parte degli annotatori disponibili presentavano errori sistematici che causavano una bassa coerenza nell’annotazione finale, ho implementato VarPred, un nuovo strumento per l’annotazione delle varianti, che garantisce la migliore accuratezza (>99%) comparato con lo stato dell’arte, mostrando allo stesso tempo buoni tempi di esecuzione. Per facilitare l’utilizzo di VarPred, ho sviluppato un’interfaccia web molto intuitiva, che permette non solo la visualizzazione grafica dei risultati, ma anche una semplice strategia di filtraggio. Inoltre, per un’efficace prioritizzazione mediata dall’utente delle varianti umane, ho sviluppato QueryOR, una piattaforma web adatta alla ricerca all’interno dei geni causativi, ma utile anche per trovare nuove associazioni gene-malattia. QueryOR combina svariate caratteristiche innovative che lo rendono comprensivo, flessibile e facile da usare. La prioritizzazione è raggiunta tramite un processo di selezione positiva che fa emergere le varianti maggiormente significative, piuttosto che filtrare quelle che non soddisfano i criteri imposti. QueryOR è stato usato per analizzare i due casi studio inclusi all’interno del progetto BioInfoGen. In particolare, ha permesso di scoprire le varianti causative dei pazienti affetti da malattie da accumulo lisosomiale, evidenziando inoltre l’efficacia del pannello di sequenziamento sviluppato. Dall’altro lato invece QueryOR ha semplificato l’individuazione del gene LRP2 come possibile candidato per spiegare i soggetti con un fenotipo simile alla malattia di Dent, ma senza alcuna mutazione nei due geni precedentemente descritti come causativi, CLCN5 e OCRL. Come corollario finale, è stata effettuata un’analisi estensiva su varianti esomiche ricorrenti, mostrando come la loro origine possa essere principalmente spiegata da imprecisioni nel genoma di riferimento, tra cui regioni mal assemblate e basi non corrette, piuttosto che da errori piattaforma-specifici.
15-gen-2018
In the last decade, the huge decreasing of sequencing cost due to the development of high-throughput technologies completely changed the way for approaching the genetic problems. In particular, whole exome and whole genome sequencing are contributing to the extraordinary progress in the study of human variants opening up new perspectives in personalized medicine. Being a relatively new and fast developing field, appropriate tools and specialized knowledge are required for an efficient data production and analysis. In line with the times, in 2014, the University of Padua funded the BioInfoGen Strategic Project with the goal of developing technology and expertise in bioinformatics and molecular biology applied to personal genomics. The aim of my PhD was to contribute to this challenge by implementing a series of innovative tools and by applying them for investigating and possibly solving the case studies included into the project. I firstly developed an automated pipeline for dealing with Illumina data, able to sequentially perform each step necessary for passing from raw reads to somatic or germline variant detection. The system performance has been tested by means of internal controls and by its application on a cohort of patients affected by gastric cancer, obtaining interesting results. Once variants are called, they have to be annotated in order to define their properties such as the position at transcript and protein level, the impact on protein sequence, the pathogenicity and more. As most of the publicly available annotators were affected by systematic errors causing a low consistency in the final annotation, I implemented VarPred, a new tool for variant annotation, which guarantees the best accuracy (>99%) compared to the state-of-the-art programs, showing also good processing times. To make easy the use of VarPred, I equipped it with an intuitive web interface, that allows not only a graphical result evaluation, but also a simple filtration strategy. Furthermore, for a valuable user-driven prioritization of human genetic variations, I developed QueryOR, a web platform suitable for searching among known candidate genes as well as for finding novel gene-disease associations. QueryOR combines several innovative features that make it comprehensive, flexible and easy to use. The prioritization is achieved by a global positive selection process that promotes the emergence of the most reliable variants, rather than filtering out those not satisfying the applied criteria. QueryOR has been used to analyze the two case studies framed within the BioInfoGen project. In particular, it allowed to detect causative variants in patients affected by lysosomal storage diseases, highlighting also the efficacy of the designed sequencing panel. On the other hand, QueryOR simplified the recognition of LRP2 gene as possible candidate to explain such subjects with a Dent disease-like phenotype, but with no mutation in the previously identified disease-associated genes, CLCN5 and OCRL. As final corollary, an extensive analysis over recurrent exome variants was performed, showing that their origin can be mainly explained by inaccuracies in the reference genome, including misassembled regions and uncorrected bases, rather than by platform specific errors.
variant prioritization, variant annotation, variant analysis, next generation sequencing, whole exome sequencing, data analysis, bioinformatics, genomics
Bioinformatics for personal genomics: development and application of bioinformatic procedures for the analysis of genomic data / Bertoldi, Loris. - (2018 Jan 15).
File in questo prodotto:
File Dimensione Formato  
Bertoldi_Loris_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Accesso gratuito
Dimensione 6.22 MB
Formato Adobe PDF
6.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3421950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact