The extension complexity xc(P) of a polytope P is the minimum number of facets of a polytope that affinely projects to P. Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. It is easy to see that n⩽ xc(STAB(G)) ⩽ n+ m. We improve both of these bounds. For the upper bound, we show that xc(STAB(G)) is O(n2logn), which is an improvement when G has quadratically many edges. For the lower bound, we prove that xc(STAB(G)) is Ω(nlog n) when G is the incidence graph of a finite projective plane. We also provide examples of 3-regular bipartite graphs G such that the edge vs stable set matrix of G has a fooling set of size |E(G)|.

Extension complexity of stable set polytopes of bipartite graphs

Aprile M.;Faenza Y.;
2017

Abstract

The extension complexity xc(P) of a polytope P is the minimum number of facets of a polytope that affinely projects to P. Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. It is easy to see that n⩽ xc(STAB(G)) ⩽ n+ m. We improve both of these bounds. For the upper bound, we show that xc(STAB(G)) is O(n2logn), which is an improvement when G has quadratically many edges. For the lower bound, we prove that xc(STAB(G)) is Ω(nlog n) when G is the incidence graph of a finite projective plane. We also provide examples of 3-regular bipartite graphs G such that the edge vs stable set matrix of G has a fooling set of size |E(G)|.
2017
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
43rd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2017
978-3-319-68704-9
978-3-319-68705-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3421219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact