In the context of simple finite-state discrete time systems, we introduce a generalization of a mean field game solution, called a correlated solution, which can be seen as the mean field game analogue of a correlated equilibrium. Our notion of a solution is justified in two ways: we prove that correlated solutions arise as limits of exchangeable correlated equilibria in restricted (Markov open-loop) strategies for the underlying N-player games, and we show how to construct approximate N-player correlated equilibria starting from a correlated solution to the mean field game.

Correlated Equilibria and Mean Field Games: A Simple Model

Fischer, Markus
2022

Abstract

In the context of simple finite-state discrete time systems, we introduce a generalization of a mean field game solution, called a correlated solution, which can be seen as the mean field game analogue of a correlated equilibrium. Our notion of a solution is justified in two ways: we prove that correlated solutions arise as limits of exchangeable correlated equilibria in restricted (Markov open-loop) strategies for the underlying N-player games, and we show how to construct approximate N-player correlated equilibria starting from a correlated solution to the mean field game.
File in questo prodotto:
File Dimensione Formato  
Campi-Fischer MoOR47-2022.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 744.55 kB
Formato Adobe PDF
744.55 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3420827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact