A hypothesis gaining increasing popularity is that laypeople’s representations of physical phenomena might be driven by internalized physical laws. In three experiments, we tested if such hypothesis holds true for the representation of gravitational motion. Participants were presented with realistic, real-scale virtual spheres falling vertically downward from about 2 m high. The spheres appeared to be made of either polystyrene or wood. In Experiment 1, participants adjusted the falling motion pattern until it appeared to be natural. In Experiment 2, they compared the perceived naturalness of vertical free falls in a vacuum with the perceived naturalness of more realistic falls characterized by the presence of air drag. In Experiment 3, they estimated the position of the sphere after a variable interval of time from the beginning of the fall. Inconsistently with predictions from physics, results showed that representations of gravitational motion were strongly affected by the implied masses of the falling objects and did not account for air drag. This provides support for the hypothesis of weight-based heuristic representations of gravitational motion against the hypothesis of the internalization of physical laws.

Evidence of Weight-Based Representations of Gravitational Motion

Vicovaro M.
;
Ghiani A.;Mena F.;Battaglini L.
2021

Abstract

A hypothesis gaining increasing popularity is that laypeople’s representations of physical phenomena might be driven by internalized physical laws. In three experiments, we tested if such hypothesis holds true for the representation of gravitational motion. Participants were presented with realistic, real-scale virtual spheres falling vertically downward from about 2 m high. The spheres appeared to be made of either polystyrene or wood. In Experiment 1, participants adjusted the falling motion pattern until it appeared to be natural. In Experiment 2, they compared the perceived naturalness of vertical free falls in a vacuum with the perceived naturalness of more realistic falls characterized by the presence of air drag. In Experiment 3, they estimated the position of the sphere after a variable interval of time from the beginning of the fall. Inconsistently with predictions from physics, results showed that representations of gravitational motion were strongly affected by the implied masses of the falling objects and did not account for air drag. This provides support for the hypothesis of weight-based heuristic representations of gravitational motion against the hypothesis of the internalization of physical laws.
File in questo prodotto:
File Dimensione Formato  
JEPHPP2021.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3418141
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact