This paper contributes to the existing literature on the analysis of spatial time series presenting a new clustering algorithm called COFUST, i.e. COpula-based FUzzy clustering algorithm for Spatial Time series. The underlying idea of this algorithm is to perform a fuzzy Partitioning Around Medoids (PAM) clustering using copula-based approach to interpret comovements of time series. This generalisation allows both to extend usual clustering methods for time series based on Pearson's correlation and to capture the uncertainty that arises assigning units to clusters. Furthermore, its flexibility permits to include directly in the algorithm the spatial information. Our approach is presented and discussed using both simulated and real data, highlighting its main advantages.

Copula-based fuzzy clustering of spatial time series

Disegna M.;
2017

Abstract

This paper contributes to the existing literature on the analysis of spatial time series presenting a new clustering algorithm called COFUST, i.e. COpula-based FUzzy clustering algorithm for Spatial Time series. The underlying idea of this algorithm is to perform a fuzzy Partitioning Around Medoids (PAM) clustering using copula-based approach to interpret comovements of time series. This generalisation allows both to extend usual clustering methods for time series based on Pearson's correlation and to capture the uncertainty that arises assigning units to clusters. Furthermore, its flexibility permits to include directly in the algorithm the spatial information. Our approach is presented and discussed using both simulated and real data, highlighting its main advantages.
File in questo prodotto:
File Dimensione Formato  
2017SPASTA_DDD_proof.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Creative commons
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3417815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 46
  • OpenAlex ND
social impact