We study the problem of formally verifying individual fairness of decision tree ensembles, as well as training tree models which maximize both accuracy and individual fairness. In our approach, fairness verification and fairness-aware training both rely on a notion of stability of a classifier, which is a generalization of the standard notion of robustness to input perturbations used in adversarial machine learning. Our verification and training methods leverage abstract interpretation, a well-established mathematical framework for designing computable, correct, and precise approximations of potentially infinite behaviors. We implemented our fairness-aware learning method by building on a tool for adversarial training of decision trees. We evaluated it in practice on the reference datasets in the literature on fairness in machine learning. The experimental results show that our approach is able to train tree models exhibiting a high degree of individual fairness with respect to the natural state-of-the-art CART trees and random forests. Moreover, as a by-product, these fairness-aware decision trees turn out to be significantly compact, which naturally enhances their interpretability.

Fairness-Aware Training of Decision Trees by Abstract Interpretation

Ranzato F.
;
Zanella M.
2021

Abstract

We study the problem of formally verifying individual fairness of decision tree ensembles, as well as training tree models which maximize both accuracy and individual fairness. In our approach, fairness verification and fairness-aware training both rely on a notion of stability of a classifier, which is a generalization of the standard notion of robustness to input perturbations used in adversarial machine learning. Our verification and training methods leverage abstract interpretation, a well-established mathematical framework for designing computable, correct, and precise approximations of potentially infinite behaviors. We implemented our fairness-aware learning method by building on a tool for adversarial training of decision trees. We evaluated it in practice on the reference datasets in the literature on fairness in machine learning. The experimental results show that our approach is able to train tree models exhibiting a high degree of individual fairness with respect to the natural state-of-the-art CART trees and random forests. Moreover, as a by-product, these fairness-aware decision trees turn out to be significantly compact, which naturally enhances their interpretability.
2021
International Conference on Information and Knowledge Management, Proceedings
30th ACM International Conference on Information and Knowledge Management, CIKM 2021
9781450384469
File in questo prodotto:
File Dimensione Formato  
cameraready.pdf

non disponibili

Tipologia: Postprint (accepted version)
Licenza: Accesso privato - non pubblico
Dimensione 747.3 kB
Formato Adobe PDF
747.3 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3416537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact