Background and Objective: Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities. Methods: In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient. Results: Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method. Conclusions: Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.

An adaptive registration algorithm for zebrafish larval brain images

Tiso N.
Membro del Collaboration Group
;
Grisan E.;
2022

Abstract

Background and Objective: Zebrafish (Danio rerio) in their larval stages have grown increasingly popular as excellent vertebrate models for neurobiological research. Researchers can apply various tools in order to decode the neural structure patterns which can aid the understanding of vertebrate brain development. In order to do so, it is essential to map the gene expression patterns to an anatomical reference precisely. However, high accuracy in sample registration is sometimes difficult to achieve due to laboratory- or protocol-dependent variabilities. Methods: In this paper, we propose an accurate adaptive registration algorithm for volumetric zebrafish larval image datasets using a synergistic combination of attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms. A coarse registration is achieved first for 3D volumetric data using a 3D affine transformation. A localized registration algorithm in form of a B-splines based FFD is applied next on the coarsely registered volume. Finally, the Demons algorithm is applied on this FFD registered volume for achieving fine registration by making the solution noise resilient. Results: Results Experimental procedures are carried out on a number of 72 hpf (hours post fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-of-the-art methods including some ablation studies clearly demonstrate the effectiveness of the proposed method. Conclusions: Our adaptive registration algorithm significantly aids Zebrafish imaging analysis over current methods for gene expression anatomical mapping, such as Vibe-Z. We believe the proposed solution would be able to overcome the requirement of high quality images which currently limits the applicability of Zebrafish in neuroimaging research.
File in questo prodotto:
File Dimensione Formato  
Deb-2022.pdf

non disponibili

Descrizione: Main manuscript
Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3415284
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact