The notion of mitochondria being involved in the decoding and shaping of intracellular Ca2+ signals has been circulating since the end of the 19th century. Despite that, the molecular identity of the channel that mediates Ca2+ ion transport into mitochondria remained elusive for several years. Only in the last decade, the genes and pathways responsible for the mitochondrial uptake of Ca2+ began to be cloned and characterized. The gene coding for the pore-forming unit of the mitochondrial channel was discovered exactly 10 years ago, and its product was called mitochondrial Ca2+ uniporter or MCU. Before that, only one of its regulators, the mitochondria Ca2+ uptake regulator 1, MICU1, has been described in 2010. However, in the following years, the scientific interest in mitochondrial Ca2+ signaling regulation and physiological role has increased. This shortly led to the identification of many of its components, to the description of their 3D structure, and the characterization of the uniporter contribution to tissue physiology and pathology. In this review, we will summarize the most relevant achievements in the history of mitochondrial Ca2+ studies, presenting a chronological overview of the most relevant and landmarking discoveries. Finally, we will explore the impact of mitochondrial Ca2+ signaling in the context of muscle physiology, highlighting the recent advances in understanding the role of the MCU complex in the control of muscle trophism and metabolism.
From the identification to the dissection of the physiological role of the mitochondrial calcium uniporter: An ongoing story
Pallafacchina G.;Zanin S.;Rizzuto R.
2021
Abstract
The notion of mitochondria being involved in the decoding and shaping of intracellular Ca2+ signals has been circulating since the end of the 19th century. Despite that, the molecular identity of the channel that mediates Ca2+ ion transport into mitochondria remained elusive for several years. Only in the last decade, the genes and pathways responsible for the mitochondrial uptake of Ca2+ began to be cloned and characterized. The gene coding for the pore-forming unit of the mitochondrial channel was discovered exactly 10 years ago, and its product was called mitochondrial Ca2+ uniporter or MCU. Before that, only one of its regulators, the mitochondria Ca2+ uptake regulator 1, MICU1, has been described in 2010. However, in the following years, the scientific interest in mitochondrial Ca2+ signaling regulation and physiological role has increased. This shortly led to the identification of many of its components, to the description of their 3D structure, and the characterization of the uniporter contribution to tissue physiology and pathology. In this review, we will summarize the most relevant achievements in the history of mitochondrial Ca2+ studies, presenting a chronological overview of the most relevant and landmarking discoveries. Finally, we will explore the impact of mitochondrial Ca2+ signaling in the context of muscle physiology, highlighting the recent advances in understanding the role of the MCU complex in the control of muscle trophism and metabolism.File | Dimensione | Formato | |
---|---|---|---|
biomolecules-11-00786.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.