Background: Humans are exposed to several per- and polyfluoroalkyl substances (PFAS) daily; however, most previous studies have focused on individual PFAS. Although attention to effects of exposure to mixtures of PFAS has grown in recent years, there is no consensus on the appropriate statistical methods that can be used to assess their combined effect on human health. Objectives: We aim to perform a comprehensive review of the statistical methods used in the existing studies which evaluate the association between exposure to mixtures of PFAS and any adverse human health effect. Methods: The online databases PubMed, Embase and Scopus were searched for eligible studies, published during the last ten years (last search performed on April 08, 2021). Covidence software was used by two different reviewers to perform a title/abstract screening, followed by a full text revision of the selected papers. Results: A total of 3640 papers were identified, and after the screening process, 53 papers were included in the current review. Most of the studies were published between 2019 and 2021 and were conducted mainly in North America and Europe; more than half of the studies (28 out of 53) were conducted on mother and child pairs. WQS (Weighted Quantile Sum) Regression and BKMR (Bayesian Kernel Machine Regression) were used in 36 out of 53 papers to model mixtures’ effects. Health outcomes included in the studies are immunotoxicity (n = 8), fetal development (n = 7), neurodevelopment (n = 9), reproductive hormones (n = 6), thyroid hormones (n = 7), outcomes related to metabolic pathways (n = 16). Conclusion: Studies on human exposure to PFAS as complex mixtures and health consequences have substantially increased in the last few years. Based on our findings, we propose that addressing risk from PFAS mixtures will likely require combinations of approaches and implementation of constantly evolving statistical methods. Specific guidelines and tools for quality assessment and publication of mixture observational studies are warranted.
How to investigate human health effects related to exposure to mixtures of per- and polyfluoroalkyl substances: A systematic review of statistical methods
Rosato I.;Zare Jeddi M.;Gallo E.;Pitter G.;Batzella E.;Canova C.
2022
Abstract
Background: Humans are exposed to several per- and polyfluoroalkyl substances (PFAS) daily; however, most previous studies have focused on individual PFAS. Although attention to effects of exposure to mixtures of PFAS has grown in recent years, there is no consensus on the appropriate statistical methods that can be used to assess their combined effect on human health. Objectives: We aim to perform a comprehensive review of the statistical methods used in the existing studies which evaluate the association between exposure to mixtures of PFAS and any adverse human health effect. Methods: The online databases PubMed, Embase and Scopus were searched for eligible studies, published during the last ten years (last search performed on April 08, 2021). Covidence software was used by two different reviewers to perform a title/abstract screening, followed by a full text revision of the selected papers. Results: A total of 3640 papers were identified, and after the screening process, 53 papers were included in the current review. Most of the studies were published between 2019 and 2021 and were conducted mainly in North America and Europe; more than half of the studies (28 out of 53) were conducted on mother and child pairs. WQS (Weighted Quantile Sum) Regression and BKMR (Bayesian Kernel Machine Regression) were used in 36 out of 53 papers to model mixtures’ effects. Health outcomes included in the studies are immunotoxicity (n = 8), fetal development (n = 7), neurodevelopment (n = 9), reproductive hormones (n = 6), thyroid hormones (n = 7), outcomes related to metabolic pathways (n = 16). Conclusion: Studies on human exposure to PFAS as complex mixtures and health consequences have substantially increased in the last few years. Based on our findings, we propose that addressing risk from PFAS mixtures will likely require combinations of approaches and implementation of constantly evolving statistical methods. Specific guidelines and tools for quality assessment and publication of mixture observational studies are warranted.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.