Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base mismatches, missing bases, crosslinks, and so on, occur in DNA with high frequency and must be efficiently identified and repaired to avoid dire consequences such as genetic mutations. Here, we focus on the detection of base mismatches, which is local deviations from the ideal Watson-Crick pairing rule, which may typically originate from DNA replication process, foreign chemical attack, or ionizing radiation. Experimental detection of a mismatch defect demands the ability to measure slight deviations in the free energy and molecular structure. We introduce different mismatches in short DNA hairpins (10 or 20 base pairs plus a 4-base loop) sandwiched between dsDNA handles to be used in single-molecule force spectroscopy with optical tweezers. We perform both hopping and force-pulling experiments to measure the excess free energies and deduce the characteristic kinetic signatures of the mismatch from the force-distance curves. All-atom molecular dynamics simulations lend support to the detailed interpretation of the experimental data. Such measurements, at the lowest sensitivity limits of this experimental technique, demonstrate the capability of identifying the presence of mismatches in a random complementary dsDNA sequence and provide lower bounds for the ability to distinguish different structural defects.

Detection of single DNA mismatches by force spectroscopy in short DNA hairpins

Ritort F.
2020

Abstract

Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base mismatches, missing bases, crosslinks, and so on, occur in DNA with high frequency and must be efficiently identified and repaired to avoid dire consequences such as genetic mutations. Here, we focus on the detection of base mismatches, which is local deviations from the ideal Watson-Crick pairing rule, which may typically originate from DNA replication process, foreign chemical attack, or ionizing radiation. Experimental detection of a mismatch defect demands the ability to measure slight deviations in the free energy and molecular structure. We introduce different mismatches in short DNA hairpins (10 or 20 base pairs plus a 4-base loop) sandwiched between dsDNA handles to be used in single-molecule force spectroscopy with optical tweezers. We perform both hopping and force-pulling experiments to measure the excess free energies and deduce the characteristic kinetic signatures of the mismatch from the force-distance curves. All-atom molecular dynamics simulations lend support to the detailed interpretation of the experimental data. Such measurements, at the lowest sensitivity limits of this experimental technique, demonstrate the capability of identifying the presence of mismatches in a random complementary dsDNA sequence and provide lower bounds for the ability to distinguish different structural defects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3414060
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact