This study presents the implementation of a within-subject classification method, based on the use of Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM), for the classification of hemodynamic responses. Using a synthetic dataset that closely resembles real experimental infant functional near-infrared spectroscopy (fNIRS) data, the impact of different levels of noise and different HRF amplitudes on the classification performances of the two classifiers are quantitively investigated.

Classification of fNIRS data with LDA and SVM: a proof-of-concept for application in infant studies

Gemignani J.
2021

Abstract

This study presents the implementation of a within-subject classification method, based on the use of Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM), for the classification of hemodynamic responses. Using a synthetic dataset that closely resembles real experimental infant functional near-infrared spectroscopy (fNIRS) data, the impact of different levels of noise and different HRF amplitudes on the classification performances of the two classifiers are quantitively investigated.
2021
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
978-1-7281-1179-7
File in questo prodotto:
File Dimensione Formato  
2021_Gemignani_LDA_SVM.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 414.03 kB
Formato Adobe PDF
414.03 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3413415
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact