The use of a large and diversified ground-truth synthetic fNIRS dataset enables researchers to objectively validate and compare data analysis procedures. In this work, we describe each step of the synthetic data generation workflow and we provide tools to generate the dataset.

A practical guide for synthetic fNIRS data generation

Gemignani J.
;
Gervain J.
2021

Abstract

The use of a large and diversified ground-truth synthetic fNIRS dataset enables researchers to objectively validate and compare data analysis procedures. In this work, we describe each step of the synthetic data generation workflow and we provide tools to generate the dataset.
2021
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
978-1-7281-1179-7
File in questo prodotto:
File Dimensione Formato  
2021_GemignaniGervain_SyntheticFNIRS.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 679.71 kB
Formato Adobe PDF
679.71 kB Adobe PDF Visualizza/Apri   Richiedi una copia
2021_GemignaniGervain_SyntheticFNIRS.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 695.72 kB
Formato Adobe PDF
695.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3413412
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact