The use of a large and diversified ground-truth synthetic fNIRS dataset enables researchers to objectively validate and compare data analysis procedures. In this work, we describe each step of the synthetic data generation workflow and we provide tools to generate the dataset.
A practical guide for synthetic fNIRS data generation
Gemignani J.
;Gervain J.
2021
Abstract
The use of a large and diversified ground-truth synthetic fNIRS dataset enables researchers to objectively validate and compare data analysis procedures. In this work, we describe each step of the synthetic data generation workflow and we provide tools to generate the dataset.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2021_GemignaniGervain_SyntheticFNIRS.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
679.71 kB
Formato
Adobe PDF
|
679.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2021_GemignaniGervain_SyntheticFNIRS.pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Accesso libero
Dimensione
695.72 kB
Formato
Adobe PDF
|
695.72 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.