8-Oxoguanine, a common mutagenic DNA lesion, generates G:C > T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C > T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strong sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. The occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.

A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer

Urso E. D. L.;Agostini M.;
2017

Abstract

8-Oxoguanine, a common mutagenic DNA lesion, generates G:C > T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C > T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strong sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. The occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.
2017
File in questo prodotto:
File Dimensione Formato  
ebiomedicine.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3413403
Citazioni
  • ???jsp.display-item.citation.pmc??? 77
  • Scopus 141
  • ???jsp.display-item.citation.isi??? 134
social impact