In oral solid dosage production through direct compression powder lubrication must be carefully selected to facilitate the manufacturing of tablets without degrading product manufacturability and quality (e.g. dissolution). To do so, several semi-empirical models relating compression performance to process operating conditions have been developed. Among them, we consider an extension of the Kushner and Moore model (Kushner and Moore, 2010, International Journal Pharmaceutics, 399:19) that is useful for the purpose, but requires an extensive experimental campaign for parameters identification. This implies the preparation and compression of multiple powder blends, each one with a different lubrication extent. In turn, this translates into a considerable consumption of Active Pharmaceutical Ingredient (API), and into time-consuming experiments. We tackled this issue by proposing a novel model-based design of experiments (MBDoE) approach, which minimizes the number of optimal blends for model calibration, while obtaining statistically sound parameters estimates and model predictions. Both sequential and parallel MBDoE configurations were compared. Experimental results involving two placebo blends with different lubrication sensitivity showed that this methodology is able to reduce the experimental effort by 60-70% with respect to the standard industrial practice independently of the formulation considered and configuration (i.e. parallel vs. sequential) adopted.
Streamlining tablet lubrication design via model-based design of experiments
Francesca Cenci;Massimiliano Barolo;Fabrizio Bezzo;Pierantonio Facco
2022
Abstract
In oral solid dosage production through direct compression powder lubrication must be carefully selected to facilitate the manufacturing of tablets without degrading product manufacturability and quality (e.g. dissolution). To do so, several semi-empirical models relating compression performance to process operating conditions have been developed. Among them, we consider an extension of the Kushner and Moore model (Kushner and Moore, 2010, International Journal Pharmaceutics, 399:19) that is useful for the purpose, but requires an extensive experimental campaign for parameters identification. This implies the preparation and compression of multiple powder blends, each one with a different lubrication extent. In turn, this translates into a considerable consumption of Active Pharmaceutical Ingredient (API), and into time-consuming experiments. We tackled this issue by proposing a novel model-based design of experiments (MBDoE) approach, which minimizes the number of optimal blends for model calibration, while obtaining statistically sound parameters estimates and model predictions. Both sequential and parallel MBDoE configurations were compared. Experimental results involving two placebo blends with different lubrication sensitivity showed that this methodology is able to reduce the experimental effort by 60-70% with respect to the standard industrial practice independently of the formulation considered and configuration (i.e. parallel vs. sequential) adopted.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.