We present a numerical strategy to efficiently estimate bipartite entanglement measures, and in particular the entanglement of formation, for many-body quantum systems on a lattice. Our approach exploits the tree tensor operator tensor network Ansatz, a positive loopless representation for density matrices which, as we demonstrate, efficiently encodes information on bipartite entanglement, enabling the upscaling of entanglement estimation. Employing this technique, we observe a finite-size scaling law for the entanglement of formation in 1D critical lattice models at finite temperature for up to 128 spins, extending to mixed states the scaling law for the entanglement entropy.

Entanglement of Formation of Mixed Many-Body Quantum States via Tree Tensor Operators

Arceci, L.;Silvi, P.
;
Montangero, S.
2022

Abstract

We present a numerical strategy to efficiently estimate bipartite entanglement measures, and in particular the entanglement of formation, for many-body quantum systems on a lattice. Our approach exploits the tree tensor operator tensor network Ansatz, a positive loopless representation for density matrices which, as we demonstrate, efficiently encodes information on bipartite entanglement, enabling the upscaling of entanglement estimation. Employing this technique, we observe a finite-size scaling law for the entanglement of formation in 1D critical lattice models at finite temperature for up to 128 spins, extending to mixed states the scaling law for the entanglement entropy.
File in questo prodotto:
File Dimensione Formato  
2011.01247v2.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3413256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact