The natural processes involved in the scouring of submerged sediments are crucially relevant in geomorphology along with environmental, fluvial, and oceanographic engineering. Despite their relevance, the phenomena involved are far from being completely understood, in particular for what concerns cohesive or stony substrates with brittle bulk mechanical properties. In this frame, we address the investigation of the mechanisms that govern the scouring and pattern formation on an initially flattened bed of homogenous and brittle material in a turbulent channel flow, employing direct numerical simulation. The problem is numerically tackled in the frame of peridynamic theory, which has intrinsic capabilities of reliably reproducing crack formation, coupled with the Navier–Stokes equations by the immersed boundary method. The numerical approach is reported in detail here and in the references, where extensive and fully coupled benchmarks are provided. The present paper focuses on the role of turbulence in promoting the brittle fragmentation of a solid, brittle streambed. A detailed characterization of the bedforms that originate on the brittle substrate is provided, alongside an analysis of the correlation between bed shape and the turbulent structures of the flow. We find that turbulent fluctuations locally increase the intensity of the wall-stresses producing localized damages. The accumulation of damage drives the scouring of the solid bed via a turbulence-driven fatigue mechanism. The formation, propagation, and coalescence of scouring structures are observed. In turn, these affect both the small- and large-scale structures of the turbulent flow, producing an enhancement of turbulence intensity and wall-stresses. At the small length scales, this phenomenology is put in relation to the formation of vortical cells that persist over the peaks of the channel bed. Similarly, large-scale irregularities are found to promote the formation of stationary turbulent stripes and large-scale vortices that enhance the widening and deepening of scour holes. As a result, we observe a quadratic increment of the volumetric erosion rate of the streambed, as well as a widening of the probability density of high-intensity wall stress on the channel bed.

Direct numerical simulation of the scouring of a brittle streambed in a turbulent channel flow

Dalla Barba F.;Picano F.
2021

Abstract

The natural processes involved in the scouring of submerged sediments are crucially relevant in geomorphology along with environmental, fluvial, and oceanographic engineering. Despite their relevance, the phenomena involved are far from being completely understood, in particular for what concerns cohesive or stony substrates with brittle bulk mechanical properties. In this frame, we address the investigation of the mechanisms that govern the scouring and pattern formation on an initially flattened bed of homogenous and brittle material in a turbulent channel flow, employing direct numerical simulation. The problem is numerically tackled in the frame of peridynamic theory, which has intrinsic capabilities of reliably reproducing crack formation, coupled with the Navier–Stokes equations by the immersed boundary method. The numerical approach is reported in detail here and in the references, where extensive and fully coupled benchmarks are provided. The present paper focuses on the role of turbulence in promoting the brittle fragmentation of a solid, brittle streambed. A detailed characterization of the bedforms that originate on the brittle substrate is provided, alongside an analysis of the correlation between bed shape and the turbulent structures of the flow. We find that turbulent fluctuations locally increase the intensity of the wall-stresses producing localized damages. The accumulation of damage drives the scouring of the solid bed via a turbulence-driven fatigue mechanism. The formation, propagation, and coalescence of scouring structures are observed. In turn, these affect both the small- and large-scale structures of the turbulent flow, producing an enhancement of turbulence intensity and wall-stresses. At the small length scales, this phenomenology is put in relation to the formation of vortical cells that persist over the peaks of the channel bed. Similarly, large-scale irregularities are found to promote the formation of stationary turbulent stripes and large-scale vortices that enhance the widening and deepening of scour holes. As a result, we observe a quadratic increment of the volumetric erosion rate of the streambed, as well as a widening of the probability density of high-intensity wall stress on the channel bed.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3412745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact