In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.
Non coercive unbounded first order Mean Field Games: The Heisenberg example
Mannucci P.;Marchi C.;
2022
Abstract
In this paper we study evolutive first order Mean Field Games in the Heisenberg group; each agent can move in the whole space but it has to follow “horizontal” trajectories which are given in terms of the vector fields generating the group and the kinetic part of the cost depends only on the horizontal velocity. The Hamiltonian is not coercive in the gradient term and the coefficients of the first order term in the continuity equation may have a quadratic growth at infinity. The main results of this paper are two: the former is to establish the existence of a weak solution to the Mean Field Game systems while the latter is to represent this solution following the Lagrangian formulation of the Mean Field Games. We also provide some generalizations to Heisenberg-type structures.File | Dimensione | Formato | |
---|---|---|---|
22JDE.pdf
embargo fino al 20/01/2025
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
469.1 kB
Formato
Adobe PDF
|
469.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.