The ever-increasing number of earth-orbiting spacecraft and related space junk is resulting in a dramatic rise in the risk of space debris impacting and damaging satellites and thereby negatively affecting the regular execution of several services provided by space-borne infrastructures. In the past years, the satellite market experienced a paradigm shift with the rise of small satellites and constellations formed by hundreds of satellites. It is anticipated that by the end of this decade, more than a thousand satellites per year will be launched, representing a potential market of more than $300 billion. With continued miniaturization of devices and the evolution of new mission requirements that rely on advanced sensor technology, future spacecraft will have an increasing density of devices and sensors. Moreover, a great research effort is required to improve the efficiency and reduce the weight of spacecraft shields. One route to achieve these goals is developing smart shields able to estimate the level of damage following the impact. In this context, the paper investigates a proof of concept based on the design, manufacture and testing of a measurement system, based on Thin Film Heat Flux Gauges (TFHFG), to assess the damage posed by orbital debris to the satellite shields upon Hyper Velocity Impacts (HVI). The system aims to measure the local increase in shield temperature, which is correlated to the kinetic energy of the debris. Following design and manufacturing, the proposed sensors were calibrated and mounted on a ductile aluminum alloy target, representative of the spacecraft shields, and subjected to a campaign of HVI tests. The results highlight that the signal is composed by the mechanical and thermal contribution, with a dominant mechanical factor.
A conceptual study to characterize properties of space debris from hypervelocity impacts through Thin Film Heat Flux Gauges
Olivieri L.;Giacomuzzo C.;Francesconi A.;
2021
Abstract
The ever-increasing number of earth-orbiting spacecraft and related space junk is resulting in a dramatic rise in the risk of space debris impacting and damaging satellites and thereby negatively affecting the regular execution of several services provided by space-borne infrastructures. In the past years, the satellite market experienced a paradigm shift with the rise of small satellites and constellations formed by hundreds of satellites. It is anticipated that by the end of this decade, more than a thousand satellites per year will be launched, representing a potential market of more than $300 billion. With continued miniaturization of devices and the evolution of new mission requirements that rely on advanced sensor technology, future spacecraft will have an increasing density of devices and sensors. Moreover, a great research effort is required to improve the efficiency and reduce the weight of spacecraft shields. One route to achieve these goals is developing smart shields able to estimate the level of damage following the impact. In this context, the paper investigates a proof of concept based on the design, manufacture and testing of a measurement system, based on Thin Film Heat Flux Gauges (TFHFG), to assess the damage posed by orbital debris to the satellite shields upon Hyper Velocity Impacts (HVI). The system aims to measure the local increase in shield temperature, which is correlated to the kinetic energy of the debris. Following design and manufacturing, the proposed sensors were calibrated and mounted on a ductile aluminum alloy target, representative of the spacecraft shields, and subjected to a campaign of HVI tests. The results highlight that the signal is composed by the mechanical and thermal contribution, with a dominant mechanical factor.File | Dimensione | Formato | |
---|---|---|---|
A conceptual study to characterize properties of space debris from hypervelocity impacts through Thin Film Heat Flux Gauges-MAS2021-Paper_1547-Leonardo_Barilaro.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
950.53 kB
Formato
Adobe PDF
|
950.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.