One of the open issues in additive manufacturing is the design of conformal lattice structures, leading to an optimal layout of the struts in the design domain. This paper aims to compare different struts distributions in conformal lattices via low computational power methods in a CAD environment. Four approaches for a wireframe virtual model definition are presented for a simple cubic conformal lattice structure. An iterative variable diameter optimization method and two linear structural analyses based on mono-dimensional elements and different theories are compared. These verification methods widen the capability of checking the results so the user can compute the deformation of 3D periodic structures, or other visual results, without spending a huge amount of time and computational power. Results show that both the analysis methods give reliable results and the struts layout based on trivariate NURBS shows the most flexible solution allowing for a real-time variation of the boundary condition.

Conformal Lattice Structures: Modeling and Optimization

Dal Fabbro P.;Rosso S.;Meneghello R.;Concheri G.;Savio G.
2022

Abstract

One of the open issues in additive manufacturing is the design of conformal lattice structures, leading to an optimal layout of the struts in the design domain. This paper aims to compare different struts distributions in conformal lattices via low computational power methods in a CAD environment. Four approaches for a wireframe virtual model definition are presented for a simple cubic conformal lattice structure. An iterative variable diameter optimization method and two linear structural analyses based on mono-dimensional elements and different theories are compared. These verification methods widen the capability of checking the results so the user can compute the deformation of 3D periodic structures, or other visual results, without spending a huge amount of time and computational power. Results show that both the analysis methods give reliable results and the struts layout based on trivariate NURBS shows the most flexible solution allowing for a real-time variation of the boundary condition.
2022
Lecture Notes in Mechanical Engineering
2nd International Conference on Design Tools and Methods in Industrial Engineering, ADM 2021
978-3-030-91233-8
978-3-030-91234-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3410854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact