The most effective expression of the 4.0 Era is represented by cyber-physical systems (CPSs). Historically, measurement and monitoring systems (MMSs) have been an essential part of CPSs; however, by introducing the 4.0 enabling technologies into MMSs, a MMS can evolve into a cyber-physical measurement system (CPMS). Starting from this consideration, this work reports a preliminary case study of a CPMS, namely an innovative bioinspired robotic platform that can be used for measurement and monitoring applications in confined and constrained environments. The innovative system is a "soft growing" robot that can access a remote site through controlled lengthening and steering of its body via a pneumatic actuation mechanism. The system can be endowed with different sensors at the tip, or along its body, to enable remote measurement and monitoring tasks; as a result, the robot can be employed to effectively deploy sensors in remote locations. In this work, a digital twin of the system is developed for simulation of a practical measurement scenario. The ultimate goal is to achieve a self-adapting, fully/partially autonomous system for remote monitoring operations to be used reliably and safely for the inspection of unknown and/or constrained environments.
Towards the development of a cyber-physical measurement system (CPMS): Case study of a bioinspired soft growing robot for remote measurement and monitoring applications
Debei S.;Chiodini S.
2021
Abstract
The most effective expression of the 4.0 Era is represented by cyber-physical systems (CPSs). Historically, measurement and monitoring systems (MMSs) have been an essential part of CPSs; however, by introducing the 4.0 enabling technologies into MMSs, a MMS can evolve into a cyber-physical measurement system (CPMS). Starting from this consideration, this work reports a preliminary case study of a CPMS, namely an innovative bioinspired robotic platform that can be used for measurement and monitoring applications in confined and constrained environments. The innovative system is a "soft growing" robot that can access a remote site through controlled lengthening and steering of its body via a pneumatic actuation mechanism. The system can be endowed with different sensors at the tip, or along its body, to enable remote measurement and monitoring tasks; as a result, the robot can be employed to effectively deploy sensors in remote locations. In this work, a digital twin of the system is developed for simulation of a practical measurement scenario. The ultimate goal is to achieve a self-adapting, fully/partially autonomous system for remote monitoring operations to be used reliably and safely for the inspection of unknown and/or constrained environments.File | Dimensione | Formato | |
---|---|---|---|
Towards the development of a cyber-physical measurement system (CPMS).pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
842.36 kB
Formato
Adobe PDF
|
842.36 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.