The evoluted set is the set of configurations reached from an initial set via a fixed flow for all times in a fixed interval. We find conditions on the initial set and on the flow ensuring that the evoluted set has negligible boundary (i.e. its Lebesgue measure is zero). We also provide several counterexample showing that the hypotheses of our theorem are close to sharp.

On the Lebesgue measure of the boundary of the evoluted set

Boarotto, Francesco;Caravenna, Laura;Rossi, Francesco;Vittone, Davide
2021

Abstract

The evoluted set is the set of configurations reached from an initial set via a fixed flow for all times in a fixed interval. We find conditions on the initial set and on the flow ensuring that the evoluted set has negligible boundary (i.e. its Lebesgue measure is zero). We also provide several counterexample showing that the hypotheses of our theorem are close to sharp.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167691121002085-main.pdf

Accesso riservato

Descrizione: Articolo principale
Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 398.22 kB
Formato Adobe PDF
398.22 kB Adobe PDF Visualizza/Apri   Richiedi una copia
2107.06739.pdf

accesso aperto

Descrizione: Articolo principale in preprint
Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Accesso libero
Dimensione 344.56 kB
Formato Adobe PDF
344.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3406703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact