In this paper, two short term experiments with tracers on a mixed beach are presented. The aim was to understand how the size and shape of pebbles can affect their transport under low energy conditions. Sediment transport was studied by means of RFID technology to univocally monitor every single marked pebble. A size subdivision of injected pebbles was conducted based on three classes ("Big" from - 5.5 to - 6.5 phi; "Medium", from - 5 to - 5.5 phi; and "Small", from - 4.5 to - 5 phi). Two recoveries were realised 6 and 24 h after the injection. During a single day, the wave motion was very low in the first experiment and low to moderate in the second (never exceeding 0.4. m). The results showed that discs are less dynamic than spheres but can cover greater distances. Regarding the sediment size, "Big" pebbles are less dynamic if compared to finer classes, and they move preferentially down the swash zone towards the step or do not move up-slope if already at the step. Very low and steady energy conditions facilitate cross-shore and offshore movement of pebbles, rather than a slight raise in wave height producing predominant longshore transport even with non-marginal displacements. Low to moderate energy conditions can also produce some trend displacement based on the pebble shape even though T-tests showed that shape was not statistically significant for pebble displacement. The displacements of "Medium" and "Small" sized pebbles show a statistical dissimilarity compared to the "Big" ones. To refine the velocity estimation necessary to initiate pebble movement, the threshold velocity formulas known up to now should involve the shape parameter, especially for the short term. Better knowledge of the relationship between the sediment's characteristics and dynamics is critical to forecast the durability of replenishment material and to establish the suitability of fill material relative to native beach material. Hence, a better understanding of the role of particle characteristics is necessary.

Short term displacements of marked pebbles in the swash zone: Focus on particle shape and size

Pozzebon, Alessandro
2015

Abstract

In this paper, two short term experiments with tracers on a mixed beach are presented. The aim was to understand how the size and shape of pebbles can affect their transport under low energy conditions. Sediment transport was studied by means of RFID technology to univocally monitor every single marked pebble. A size subdivision of injected pebbles was conducted based on three classes ("Big" from - 5.5 to - 6.5 phi; "Medium", from - 5 to - 5.5 phi; and "Small", from - 4.5 to - 5 phi). Two recoveries were realised 6 and 24 h after the injection. During a single day, the wave motion was very low in the first experiment and low to moderate in the second (never exceeding 0.4. m). The results showed that discs are less dynamic than spheres but can cover greater distances. Regarding the sediment size, "Big" pebbles are less dynamic if compared to finer classes, and they move preferentially down the swash zone towards the step or do not move up-slope if already at the step. Very low and steady energy conditions facilitate cross-shore and offshore movement of pebbles, rather than a slight raise in wave height producing predominant longshore transport even with non-marginal displacements. Low to moderate energy conditions can also produce some trend displacement based on the pebble shape even though T-tests showed that shape was not statistically significant for pebble displacement. The displacements of "Medium" and "Small" sized pebbles show a statistical dissimilarity compared to the "Big" ones. To refine the velocity estimation necessary to initiate pebble movement, the threshold velocity formulas known up to now should involve the shape parameter, especially for the short term. Better knowledge of the relationship between the sediment's characteristics and dynamics is critical to forecast the durability of replenishment material and to establish the suitability of fill material relative to native beach material. Hence, a better understanding of the role of particle characteristics is necessary.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact