Long Range Wide Area Network (LoRaWAN) has rapidly become one of the key enabling technologies for the development of Internet of Things (IoT) architectures. A wide range of different solutions relying on this communication technology can be found in the literature: nevertheless, the most part of these architectures focus on single task systems. Conversely, the aim of this paper is to present the architecture of a LoRaWAN infrastructure gathering under the same network different typologies of services within one of the most significant sub-systems of the Smart City ecosystem (i.e., the Smart Waste Management). The proposed architecture exploits the whole range of different LoRaWAN classes, integrating nodes of growing complexity according to the different functions. The lowest level of this architecture is occupied by smart bins that simply collect data about their status. Moving on to upper levels, smart drop-off containers allow the interaction with users as well as the implementation of asynchronous downlink queries. At the top level, Video Surveillance Units (VSUs) are provided with machine learning capabilities for the detection of the presence of fire nearby bins or drop-off containers, thus fully implementing the Edge Computing paradigm. The proposed network infrastructure and its subsystems have been tested in a laboratory and in the field. This study has enhanced the readiness level of the proposed technology to Technology Readiness Level (TRL) 3.

A multi-layer lorawan infrastructure for smart waste management

Pozzebon A.
2021

Abstract

Long Range Wide Area Network (LoRaWAN) has rapidly become one of the key enabling technologies for the development of Internet of Things (IoT) architectures. A wide range of different solutions relying on this communication technology can be found in the literature: nevertheless, the most part of these architectures focus on single task systems. Conversely, the aim of this paper is to present the architecture of a LoRaWAN infrastructure gathering under the same network different typologies of services within one of the most significant sub-systems of the Smart City ecosystem (i.e., the Smart Waste Management). The proposed architecture exploits the whole range of different LoRaWAN classes, integrating nodes of growing complexity according to the different functions. The lowest level of this architecture is occupied by smart bins that simply collect data about their status. Moving on to upper levels, smart drop-off containers allow the interaction with users as well as the implementation of asynchronous downlink queries. At the top level, Video Surveillance Units (VSUs) are provided with machine learning capabilities for the detection of the presence of fire nearby bins or drop-off containers, thus fully implementing the Edge Computing paradigm. The proposed network infrastructure and its subsystems have been tested in a laboratory and in the field. This study has enhanced the readiness level of the proposed technology to Technology Readiness Level (TRL) 3.
2021
File in questo prodotto:
File Dimensione Formato  
sensors-21-02600-2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405640
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 29
  • OpenAlex ND
social impact