Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) has been adopted as ESA "Cosmic Vision"M4 mission, with launch scheduled for 2029. Ariel is based on a 1 m class telescope optimized for spectroscopy in the waveband between 1.95 and 7.8 μm, operating in cryogenic conditions in the range 40-50 K. Aluminum has been chosen as baseline material for the telescope mirrors substrate, with a metallic coating to enhance reflectivity and protect from oxidation and corrosion. As part of Phase B1, leading to SRR and eventually mission adoption, a protected silver coating with space heritage has been selected and will undergo a qualification process. A fundamental part of this process is assuring the integrity of the coating layer and performance compliance in terms of reflectivity at the telescope operating temperature. To this purpose, a set of flat sample disks have been cut and polished from the same baseline aluminum alloy as the telescope mirror substrates, and the selected protected silver coating has been applied to them by magnetron sputtering. The disks have then been subjected to a series of cryogenic temperature cycles to assess coating performance stability. This study presents the results of visual inspection, reflectivity measurements and atomic force microscopy (AFM) on the sample disks before and after the cryogenic cycles.

The primary mirror of the Ariel mission: Cryotesting of aluminum mirror samples with protected silver coating

Chioetto P.;Zuppella P.;Da Deppo V.;
2020

Abstract

Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) has been adopted as ESA "Cosmic Vision"M4 mission, with launch scheduled for 2029. Ariel is based on a 1 m class telescope optimized for spectroscopy in the waveband between 1.95 and 7.8 μm, operating in cryogenic conditions in the range 40-50 K. Aluminum has been chosen as baseline material for the telescope mirrors substrate, with a metallic coating to enhance reflectivity and protect from oxidation and corrosion. As part of Phase B1, leading to SRR and eventually mission adoption, a protected silver coating with space heritage has been selected and will undergo a qualification process. A fundamental part of this process is assuring the integrity of the coating layer and performance compliance in terms of reflectivity at the telescope operating temperature. To this purpose, a set of flat sample disks have been cut and polished from the same baseline aluminum alloy as the telescope mirror substrates, and the selected protected silver coating has been applied to them by magnetron sputtering. The disks have then been subjected to a series of cryogenic temperature cycles to assess coating performance stability. This study presents the results of visual inspection, reflectivity measurements and atomic force microscopy (AFM) on the sample disks before and after the cryogenic cycles.
2020
Proceedings of SPIE - The International Society for Optical Engineering
Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation IV 2020
9781510636897
9781510636903
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact