Background and objectives: An Error related Potential (ErrP) can be noninvasively and directly measured from the scalp through electroencephalography (EEG), as response, when a person realizes they are making an error during a task (as a consequence of a cognitive error performed from the user). It has been shown that ErrPs can be automatically detected with time-discrete feedback tasks, which are widely applied in the Brain-Computer Interface (BCI) field for error correction or adaptation. In this work, a semi-supervised algorithm, namely the Functional Source Separation (FSS), is proposed to estimate a spatial filter for learning the ErrPs and to enhance the evoked potentials. Methods: EEG data recorded on six subjects were used to evaluate the proposed method based on FFS algorithm in comparison with the xDAWN algorithm. FSS- and xDAWN-based methods were compared also to the Cz and FCz single channel. Single-trial classification was considered to evaluate the performances of the approaches. (Both the approaches were evaluated on single-trial classification of EEGs.) Results: The results presented using the Bayesian Linear Discriminant Analysis (BLDA) classifier, show that FSS (accuracy 0.92, sensitivity 0.95, specificity 0.81, F1-score 0.95) overcomes the other methods (Cz - accuracy 0.72, sensitivity 0.74, specificity 0.63, F1-score 0.74; FCz - accuracy 0.72, sensitivity 0.75, specificity 0.61, F1-score 0.75; xDAWN - accuracy 0.75, sensitivity 0.79, specificity 0.61, F1-score 0.79) in terms of single-trial classification. Conclusions: The proposed FSS-based method increases the single-trial detection accuracy of ErrPs with respect to both single channel (Cz, FCz) and xDAWN spatial filter.

A functional source separation algorithm to enhance error-related potentials monitoring in noninvasive brain-computer interface

Burattini L.;Porcaro C.
2020

Abstract

Background and objectives: An Error related Potential (ErrP) can be noninvasively and directly measured from the scalp through electroencephalography (EEG), as response, when a person realizes they are making an error during a task (as a consequence of a cognitive error performed from the user). It has been shown that ErrPs can be automatically detected with time-discrete feedback tasks, which are widely applied in the Brain-Computer Interface (BCI) field for error correction or adaptation. In this work, a semi-supervised algorithm, namely the Functional Source Separation (FSS), is proposed to estimate a spatial filter for learning the ErrPs and to enhance the evoked potentials. Methods: EEG data recorded on six subjects were used to evaluate the proposed method based on FFS algorithm in comparison with the xDAWN algorithm. FSS- and xDAWN-based methods were compared also to the Cz and FCz single channel. Single-trial classification was considered to evaluate the performances of the approaches. (Both the approaches were evaluated on single-trial classification of EEGs.) Results: The results presented using the Bayesian Linear Discriminant Analysis (BLDA) classifier, show that FSS (accuracy 0.92, sensitivity 0.95, specificity 0.81, F1-score 0.95) overcomes the other methods (Cz - accuracy 0.72, sensitivity 0.74, specificity 0.63, F1-score 0.74; FCz - accuracy 0.72, sensitivity 0.75, specificity 0.61, F1-score 0.75; xDAWN - accuracy 0.75, sensitivity 0.79, specificity 0.61, F1-score 0.79) in terms of single-trial classification. Conclusions: The proposed FSS-based method increases the single-trial detection accuracy of ErrPs with respect to both single channel (Cz, FCz) and xDAWN spatial filter.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405367
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 12
social impact