Functional Magnetic Resonance Imaging (fMRI) cluster analysis is widely popular for finding neural activation associated with some stimulus. However, it suffers from the spatial specificity paradox, and making follow-up inference inside clusters is not allowed. Valid double-dipping can be performed by closed testing, which determines lower confidence bounds for the number of active voxels, simultaneously over all regions. Moreover, a permutation framework adapts to the unknown joint distribution of the data. In the fMRI context, we evaluate two methods that rely on closed testing and permutations: permutation-based true discovery guarantee by sum tests, and permutation-based All-Resolutions Inference.

Valid double-dipping via permutation-based closed testing

Anna Vesely
;
Livio Finos;Angela Andreella
2021

Abstract

Functional Magnetic Resonance Imaging (fMRI) cluster analysis is widely popular for finding neural activation associated with some stimulus. However, it suffers from the spatial specificity paradox, and making follow-up inference inside clusters is not allowed. Valid double-dipping can be performed by closed testing, which determines lower confidence bounds for the number of active voxels, simultaneously over all regions. Moreover, a permutation framework adapts to the unknown joint distribution of the data. In the fMRI context, we evaluate two methods that rely on closed testing and permutations: permutation-based true discovery guarantee by sum tests, and permutation-based All-Resolutions Inference.
2021
Book of Short Papers SIS 2021
SIS 2021
9788891927361
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact