Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.

Breakdown of Specific Functional Brain Networks in Clinical Variants of Alzheimer's Disease

Pini, Lorenzo;Salvalaggio, Alessandro;Vallesi, Antonino;Corbetta, Maurizio
2021

Abstract

Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.
File in questo prodotto:
File Dimensione Formato  
PinietalAgeingResReviews2021.pdf

Open Access dal 01/01/2023

Descrizione: documento in pdf pubblicato dall'editore
Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3403396
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
  • OpenAlex ND
social impact