Molecular oxygen (O2), in spite being a potentially strong oxidant, typically displays very poor reactivity with organic molecules. This is largely due to quantum chemical reasons as O2 in its ground state is a diradical (3O2) whilst common organic substrates are in a singlet state. For this reason catalysis involving O2 as a reactant is typically mediated by enzymes containing redox metal and/or organic co-factors. Cofactor-independent oxygenases (and oxidases) are therefore intriguing enzymes from a fundamental viewpoint. This review looks at recent advances that have been made in understanding of this class of intriguing biocatalysts highlighting the power of an inter-disciplinary approach involving structural biology, spectroscopy and theoretical methods.
New insight into cofactor-free oxygenation from combined experimental and computational approaches
Steiner R.
2016
Abstract
Molecular oxygen (O2), in spite being a potentially strong oxidant, typically displays very poor reactivity with organic molecules. This is largely due to quantum chemical reasons as O2 in its ground state is a diradical (3O2) whilst common organic substrates are in a singlet state. For this reason catalysis involving O2 as a reactant is typically mediated by enzymes containing redox metal and/or organic co-factors. Cofactor-independent oxygenases (and oxidases) are therefore intriguing enzymes from a fundamental viewpoint. This review looks at recent advances that have been made in understanding of this class of intriguing biocatalysts highlighting the power of an inter-disciplinary approach involving structural biology, spectroscopy and theoretical methods.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0959440X16300720-main.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
3.44 MB
Formato
Adobe PDF
|
3.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.