Quercetin 2,3-dioxygenase (2,3QD) is a copper-containing dioxygenase that catalyses the oxidation of the flavonol quercetin to 2-protocatechuoylphloroglucinol carboxylic acid with concomitant production of carbon monoxide. In contrast to iron dioxygenases, very little is known about copper dioxygenases. We have characterized 2,3QD from the fungus Aspergillus japonicus by electron paramagnetic resonance spectroscopy (EPR). At pH 6.0, 2,3QD shows a mixture of two EPR species. The major form has parameters typical of type 2 Cu sites (g// = 2.330, A// = 13.7 mT), the minor one has a more distorted geometry (g// = 2.290, A// = 12.5 mT). Anaerobic addition of the substrate quercetin results in a different, single species EPR spectrum with g// = 2.336, A// = 11.4 mT, parameters, which are in-between those of the type 2 and type 1 Cu sites in the Peisach-Blumberg (g// vs. A//) plot. After turnover, a new EPR signal is observed, which is ascribed to the carboxylic acid ester product complex. This spectrum is similar to that of the native enzyme at pH 10.0 and has g-tensor parameters suggesting a trigonal bipyramidal site. Of a variety of flavonoids studied, only flavonols are able to bind to the copper centre of 2,3QD. Nine flavonols with different hydroxylation patterns at the A- and B-ring have been analysed. They cluster in two different regions of the Peisach-Blumberg plot and show that the presence of a 5-OH group has a large effect on the A// parameter. Several differences are noted between A. japonicus 2,3QD and the enzyme from A. niger German Collection of Microorganisms 821.
EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates
Steiner R.;
2002
Abstract
Quercetin 2,3-dioxygenase (2,3QD) is a copper-containing dioxygenase that catalyses the oxidation of the flavonol quercetin to 2-protocatechuoylphloroglucinol carboxylic acid with concomitant production of carbon monoxide. In contrast to iron dioxygenases, very little is known about copper dioxygenases. We have characterized 2,3QD from the fungus Aspergillus japonicus by electron paramagnetic resonance spectroscopy (EPR). At pH 6.0, 2,3QD shows a mixture of two EPR species. The major form has parameters typical of type 2 Cu sites (g// = 2.330, A// = 13.7 mT), the minor one has a more distorted geometry (g// = 2.290, A// = 12.5 mT). Anaerobic addition of the substrate quercetin results in a different, single species EPR spectrum with g// = 2.336, A// = 11.4 mT, parameters, which are in-between those of the type 2 and type 1 Cu sites in the Peisach-Blumberg (g// vs. A//) plot. After turnover, a new EPR signal is observed, which is ascribed to the carboxylic acid ester product complex. This spectrum is similar to that of the native enzyme at pH 10.0 and has g-tensor parameters suggesting a trigonal bipyramidal site. Of a variety of flavonoids studied, only flavonols are able to bind to the copper centre of 2,3QD. Nine flavonols with different hydroxylation patterns at the A- and B-ring have been analysed. They cluster in two different regions of the Peisach-Blumberg plot and show that the presence of a 5-OH group has a large effect on the A// parameter. Several differences are noted between A. japonicus 2,3QD and the enzyme from A. niger German Collection of Microorganisms 821.File | Dimensione | Formato | |
---|---|---|---|
8.Kooter 2002 pp 2971-9.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
446.13 kB
Formato
Adobe PDF
|
446.13 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.