Urban Building Energy Simulation (UBES) is an efficient tool to investigate and subsequently reduce energy demand of urban areas. Nevertheless, UBES has always been a challenging task due the trade-off between accuracy, computational speed and parametrization. In order to reduce these computation and parameterization requirements, model reduction and simplification methods aim at representing building behaviour with an acceptable accuracy, but using less equations and input parameters. This paper presents the development and validation results of a simplified urban simulation model based on the ISO 13790 Standard and written in the Modelica language. The model describes the thermo-physical behaviour of buildings by means of an equivalent electric network consisting of five resistances and one capacitance. The validation of the model was carried out using four cases of the ANSI/ASHRAE Standard 140. In general, the model shows good accuracy and the validation provided values within the acceptable ranges. © Content from this work may be used under the terms of the Creative Commons Attribution 3.0 Licence.
Development of a Modelica-based simplified building model for district energy simulations
Prataviera, Enrico;Zarrella, Angelo;
2021
Abstract
Urban Building Energy Simulation (UBES) is an efficient tool to investigate and subsequently reduce energy demand of urban areas. Nevertheless, UBES has always been a challenging task due the trade-off between accuracy, computational speed and parametrization. In order to reduce these computation and parameterization requirements, model reduction and simplification methods aim at representing building behaviour with an acceptable accuracy, but using less equations and input parameters. This paper presents the development and validation results of a simplified urban simulation model based on the ISO 13790 Standard and written in the Modelica language. The model describes the thermo-physical behaviour of buildings by means of an equivalent electric network consisting of five resistances and one capacitance. The validation of the model was carried out using four cases of the ANSI/ASHRAE Standard 140. In general, the model shows good accuracy and the validation provided values within the acceptable ranges. © Content from this work may be used under the terms of the Creative Commons Attribution 3.0 Licence.File | Dimensione | Formato | |
---|---|---|---|
Maccarini_2021_J._Phys.__Conf._Ser._2042_012078.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.