Pseudotachylytes are fine-grained fault rocks that solidify from melt that is produced in fault zones during earthquakes. Exposed sections of natural fault zones reveal evidence of postseismic plastic deformation (i.e., reactivation) of pseudotachylyte, which suggests these rocks may contribute to aseismic slip behavior in regions of repeated seismicity. To measure the plastic flow behavior of pseudotachylyte, we performed high-temperature deformation experiments on pseudotachylyte from the Gole Larghe Fault Zone, Italy. Plastic reactivation of pseudotachylyte occurs at temperatures above 700°C for strain rates accessible during laboratory experiments. Extrapolation of experimental results to natural conditions demonstrates that pseudotachylyte deforms via diffusion creep at crustal conditions and is much weaker than host rocks in seismically active regions. Importantly, the presence of plastically deforming pseudotachylyte may influence the thickness of the seismogenic layer in some fault zones that experience repeated seismicity.
Experimental Plastic Reactivation of Pseudotachylyte-Filled Shear Zones
Di Toro G.Supervision
2021
Abstract
Pseudotachylytes are fine-grained fault rocks that solidify from melt that is produced in fault zones during earthquakes. Exposed sections of natural fault zones reveal evidence of postseismic plastic deformation (i.e., reactivation) of pseudotachylyte, which suggests these rocks may contribute to aseismic slip behavior in regions of repeated seismicity. To measure the plastic flow behavior of pseudotachylyte, we performed high-temperature deformation experiments on pseudotachylyte from the Gole Larghe Fault Zone, Italy. Plastic reactivation of pseudotachylyte occurs at temperatures above 700°C for strain rates accessible during laboratory experiments. Extrapolation of experimental results to natural conditions demonstrates that pseudotachylyte deforms via diffusion creep at crustal conditions and is much weaker than host rocks in seismically active regions. Importantly, the presence of plastically deforming pseudotachylyte may influence the thickness of the seismogenic layer in some fault zones that experience repeated seismicity.File | Dimensione | Formato | |
---|---|---|---|
Passelegue_et_al_GRL2021.pdf
Accesso riservato
Descrizione: Articolo completo
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.