Glass microspheres with the exact stoichiometry of åkermanite (Ca2MgSi2O7), one of the most promising modern bioceramics, were produced by the flame synthesis method. The distinctive high cooling rate was found to prevent the crystallization; the size of amorphous microbeads could be correlated with the size of partially crystallized precursor powders, deriving from conventional melt quenching and milling. The glass microspheres were characterized in terms of crystallization and sintering behavior, in the perspective of applications in additive manufacturing of åkermanite-based scaffolds. The results showed that merwinite (Ca3MgSi2O8) is the primary product of glass devitrification; only in a second stage, merwinite reacts with the residual glass and yields åkermanite. The rapid crystallization, implying limited viscous flow sintering, was tested as an opportunity to create components with complex porosity distribution.

Åkermanite glass microspheres: Preparation and perspectives of sinter-crystallization

Elsayed H.;Bernardo E.
2021

Abstract

Glass microspheres with the exact stoichiometry of åkermanite (Ca2MgSi2O7), one of the most promising modern bioceramics, were produced by the flame synthesis method. The distinctive high cooling rate was found to prevent the crystallization; the size of amorphous microbeads could be correlated with the size of partially crystallized precursor powders, deriving from conventional melt quenching and milling. The glass microspheres were characterized in terms of crystallization and sintering behavior, in the perspective of applications in additive manufacturing of åkermanite-based scaffolds. The results showed that merwinite (Ca3MgSi2O8) is the primary product of glass devitrification; only in a second stage, merwinite reacts with the residual glass and yields åkermanite. The rapid crystallization, implying limited viscous flow sintering, was tested as an opportunity to create components with complex porosity distribution.
File in questo prodotto:
File Dimensione Formato  
ijag.16115.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3400281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact