We introduce the notion of local completeness in abstract interpretation and define a logic for proving both the correctness and incorrectness of some program specification. Abstract interpretation is extensively used to design sound-by-construction program analyses that over-approximate program behaviours. Completeness of an abstract interpretation A for all possible programs and inputs would be an ideal situation for verifying correctness specifications, because the analysis can be done compositionally and no false alert will arise. Our first result shows that the class of programs whose abstract analysis on A is complete for all inputs has a severely limited expressiveness. A novel notion of local completeness weakens the above requirements by considering only some specific, rather than all, program inputs and thus finds wider applicability. In fact, our main contribution is the design of a proof system, parameterized by an abstraction A, that, for the first time, combines over- and under-approximations of program behaviours. Thanks to local completeness, in a provable triple A [P ] c [Q], the assertion Q is an under-approximation of the strongest post-condition post[c](P ) such that the abstractions in A of Q and post[c](P ) coincide. This means that Q is never too coarse, namely, under mild assumptions, the abstract interpretation of c does not yield false alerts for the input P iff Q has no alert. Thus, A [P ] c [Q] not only ensures that all the alerts raised in Q are true ones, but also that if Q does not raise alerts then c is correct.

A Logic for Locally Complete Abstract Interpretations

Ranzato F.
2021

Abstract

We introduce the notion of local completeness in abstract interpretation and define a logic for proving both the correctness and incorrectness of some program specification. Abstract interpretation is extensively used to design sound-by-construction program analyses that over-approximate program behaviours. Completeness of an abstract interpretation A for all possible programs and inputs would be an ideal situation for verifying correctness specifications, because the analysis can be done compositionally and no false alert will arise. Our first result shows that the class of programs whose abstract analysis on A is complete for all inputs has a severely limited expressiveness. A novel notion of local completeness weakens the above requirements by considering only some specific, rather than all, program inputs and thus finds wider applicability. In fact, our main contribution is the design of a proof system, parameterized by an abstraction A, that, for the first time, combines over- and under-approximations of program behaviours. Thanks to local completeness, in a provable triple A [P ] c [Q], the assertion Q is an under-approximation of the strongest post-condition post[c](P ) such that the abstractions in A of Q and post[c](P ) coincide. This means that Q is never too coarse, namely, under mild assumptions, the abstract interpretation of c does not yield false alerts for the input P iff Q has no alert. Thus, A [P ] c [Q] not only ensures that all the alerts raised in Q are true ones, but also that if Q does not raise alerts then c is correct.
2021
Proceedings - Symposium on Logic in Computer Science
36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021
978-1-6654-4895-6
File in questo prodotto:
File Dimensione Formato  
cameraready.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 439.17 kB
Formato Adobe PDF
439.17 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3400197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 932
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact