An innovative approach for real-time road safety analysis is presented in this work. Unlike traditional real-time crash prediction models (RTCPMs), in which crash data are used in the training phase, a real-time conflict prediction model (RTConfPM) is proposed. This model can be trained using surrogate measures of safety, and can therefore be applied even in situations in which highly spatial/temporal-accurate crash data are unavailable or unreliable. The application of an RTConfPM consists of using a set of input variables recorded during a given time interval, to predict whether there will be an increased risk of unsafe situations in the following interval. This paper presents an RTConfPM to predict rear-end crashes, using time-to-collision values recorded with radar sensors on multiple motorway cross-sections to define unsafe situations, and traffic conditions recorded on the same sections as input to the model. The RTConfPM is compared to a traditional RTCPM, trained with a dataset of crashes located on the same motorway, and using the same traffic data as input. In both approaches, variable selection is performed with Pearson's correlation test and random forest; synthetic minority oversampling technique (SMOTE) is used to balance the classes in the training dataset, support vector machine (SVM) is used as classifier, and Monte Carlo cross-validation is adopted for robustness. The two approaches are evaluated considering accuracy, recall, specificity/false alarm rate, and area under the curve (AUC). As shown by the results of this paper, the conflict-based approach appears promising, and is able to predict the occurrence of unsafe situations within 5 min with more than 93% accuracy, recall and specificity, significantly outperforming the RTCPM.
A conflict-based approach for real-time road safety analysis: Comparative evaluation with crash-based models
Orsini F.
;Gecchele G.;Rossi R.;Gastaldi M.
2021
Abstract
An innovative approach for real-time road safety analysis is presented in this work. Unlike traditional real-time crash prediction models (RTCPMs), in which crash data are used in the training phase, a real-time conflict prediction model (RTConfPM) is proposed. This model can be trained using surrogate measures of safety, and can therefore be applied even in situations in which highly spatial/temporal-accurate crash data are unavailable or unreliable. The application of an RTConfPM consists of using a set of input variables recorded during a given time interval, to predict whether there will be an increased risk of unsafe situations in the following interval. This paper presents an RTConfPM to predict rear-end crashes, using time-to-collision values recorded with radar sensors on multiple motorway cross-sections to define unsafe situations, and traffic conditions recorded on the same sections as input to the model. The RTConfPM is compared to a traditional RTCPM, trained with a dataset of crashes located on the same motorway, and using the same traffic data as input. In both approaches, variable selection is performed with Pearson's correlation test and random forest; synthetic minority oversampling technique (SMOTE) is used to balance the classes in the training dataset, support vector machine (SVM) is used as classifier, and Monte Carlo cross-validation is adopted for robustness. The two approaches are evaluated considering accuracy, recall, specificity/false alarm rate, and area under the curve (AUC). As shown by the results of this paper, the conflict-based approach appears promising, and is able to predict the occurrence of unsafe situations within 5 min with more than 93% accuracy, recall and specificity, significantly outperforming the RTCPM.File | Dimensione | Formato | |
---|---|---|---|
AcceptedManuscriptVersion.pdf
accesso aperto
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0001457521004139-main.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.