We present 17 transit light curves of seven known warm-Jupiters observed with the CHaracterising ExOPlanet Satellite (CHEOPS). The light curves have been collected as part of the CHEOPS Guaranteed Time Observation (GTO) program that searches for transit-timing variation (TTV) of warm-Jupiters induced by a possible external perturber to shed light on the evolution path of such planetary systems. We describe the CHEOPS observation process, from the planning to the data analysis. In this work, we focused on the timing performance of CHEOPS, the impact of the sampling of the transit phases, and the improvement we can obtain by combining multiple transits together. We reached the highest precision on the transit time of about 13-16 s for the brightest target (WASP-38, G = 9.2) in our sample. From the combined analysis of multiple transits of fainter targets with G ≥ 11, we obtained a timing precision of ∼2 min. Additional observations with CHEOPS, covering a longer temporal baseline, will further improve the precision on the transit times and will allow us to detect possible TTV signals induced by an external perturber.

Exploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets

Borsato L.;Piotto G.;Nascimbeni V.;Lacedelli G.;Marzari F.;Bonfanti A.;Cabrera J.;Deleuil M.;Fossati L.;Magrin D.;Pollacco D.;Ragazzoni R.;Szabo G.;Van Grootel V.;
2021

Abstract

We present 17 transit light curves of seven known warm-Jupiters observed with the CHaracterising ExOPlanet Satellite (CHEOPS). The light curves have been collected as part of the CHEOPS Guaranteed Time Observation (GTO) program that searches for transit-timing variation (TTV) of warm-Jupiters induced by a possible external perturber to shed light on the evolution path of such planetary systems. We describe the CHEOPS observation process, from the planning to the data analysis. In this work, we focused on the timing performance of CHEOPS, the impact of the sampling of the transit phases, and the improvement we can obtain by combining multiple transits together. We reached the highest precision on the transit time of about 13-16 s for the brightest target (WASP-38, G = 9.2) in our sample. From the combined analysis of multiple transits of fainter targets with G ≥ 11, we obtained a timing precision of ∼2 min. Additional observations with CHEOPS, covering a longer temporal baseline, will further improve the precision on the transit times and will allow us to detect possible TTV signals induced by an external perturber.
File in questo prodotto:
File Dimensione Formato  
stab1782-.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Altro
Dimensione 9.39 MB
Formato Adobe PDF
9.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3399895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact